A C₈P monolayer with cross-sp-hybridized phosphorus atom and ultrahigh energy density

as a K-ion battery anode

Xu Yan¹, Sheng Wang¹, Shicong Ding¹, Javed Rehman^{2,*}, Yong Liu, and Guochun Yang^{1,3*}

¹State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China ²State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China

³Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Northeast Normal University, Changchun 130024, China

Index page
1. Computational details
2. AIMD simulations of the C ₈ P, α -C ₇ PN, and β -C ₇ PN monolayers at 300 K4
3. Band structures of the C ₈ P, α -C ₇ PN, and β -C ₇ PN monolayers at HSE06 level4
4. Possible adsorption sites of Li/Na/K on α -C ₇ PN and β -C ₇ PN monolayers
5. Charge density difference, local maps of the scanning potential energy surface, and diffusion barrier energy of Li and Na migration on the C ₈ P, α -C ₇ PN, and β -C ₇ PN monolayers5
6. Top/bottom K loading on the C ₈ P, α -C ₇ PN, and β -C ₇ PN monolayers6
7. Relative stability of the C_8PK_x/α - C_7PNK_x/β - C_7PNK_x with respect to solid K and the C_8P/α - C_7PN/β - C_7PN monolayer
8. ELF snapshots of K loaded on the α -C ₇ PN and β -C ₇ PN monolayer
9. AIMD simulations of the C_8P monolayer in an aqueous environment and C_8PK_8 at 300 K
10. The constructed and optimized structures of the defective C ₈ P monolayer8
11. Performance of the defective C_8P monolayer as K-ion battery anode
12. Structural parameters of the C_8P monolayer10
13. Structural parameters of the α -C ₇ PN monolayer
14. Structural parameters of the β -C ₇ PN monolayer
15. Bond lengths in the C ₈ P, α -C ₇ PN, and β -C ₇ PN monolayers
16. Elastic constants of the C ₈ P, α -C ₇ PN, and β -C ₇ PN monolayers
17. Lattice parameters of the C ₈ PK _x , α -C ₇ PNLi _x , and β -C ₇ PNK _x
18. References

Computational Details

The particle swarm optimization (PSO) method within the evolutionary algorithm as implemented in the Crystal structure Analysis by Particle Swarm Optimization (CALYPSO) code^{1,2} was employed to find the lowest energy structures of $C_x P_y N_z$ (x = 1~16, y = 1~4, and z = 0~2) monolayers. Unit cells containing 1 and 2 formula units (f.u.) with buckled and planar structures were considered. In the first step, random structures with certain symmetry were constructed in which atomic coordinates were generated by the crystallographic symmetry operations. Local optimizations using the VASP code³ were done with the conjugate gradients method and stopped when Gibbs free energy changes became smaller than 1×10^{-6} eV per cell. After processing the first-generation structures, 60% of them with lower enthalpies were selected to construct the next generation structures by Particle Swarm Optimization (PSO). 40% of the structures in the new generation were randomly generated. A structure fingerprinting technique of bond characterization matrix was applied to the generated structures, so that identical structures were strictly forbidden. These procedures significantly enhance the diversity of the structures, which is crucial for structural global search efficiency. In most cases, structural searching simulations for each calculation were stopped after generating 500 ~ 600 structures (e.g., about 10 \sim 15 generations).

Fig. S1 AIMD simulations of the (a) C_8P , (b) α - C_7PN , and (c) β - C_7PN monolayers at 300 K.

Fig. S2 Band structures of the (a) C_8P , (b) α -C₇PN, and (c) β -C₇PN monolayers at HSE06 level.

Fig. S3 Possible adsorption sites of Li/Na/K on the (a) α -C₇PN and (b) β -C₇PN monolayers.

Fig. S4 Charge density difference of K adsorbed on the (a) α -C₇PN and (b) β -C₇PN monolayers. Local maps of the scanning potential energy surface of the (c) α -C₇PN and (d) β -C₇PN monolayers. Diffusion barrier energy of (e) Li and (f) Na migration on the C₈P, α -C₇PN, and β -C₇PN monolayers.

Fig. S5 Top/bottom K loading on the (a) C_8P , (b) α -C₇PN, and (c) β -C₇PN monolayers.

Fig. S6 Relative stability of (a) C_8PK_x , (b) α -C₇PNK_x, and (c) β -C₇PNK_x (x = 2, 4, 6, 8) with respect to an elemental solid K and the C_8P/α -C₇PN/ β -C₇PN monolayer at 0 K. The optimized monolayers corresponding to the data points located on the convex hull are thermodynamically stable.

Fig. S7 ELF snapshots of K loaded on the (a) α -C₇PN and (c) β -C₇PN monolayers.

Fig. S8 (a) AIMD simulations of C_8PK_8 at 300 K. (b) AIMD simulations of the C_8P monolayer in an aqueous environment at 300 K.

Fig. S9 (a-c) The constructed and (d-f) the optimized structures of C_8P containing a single C vacancy (V_{CII} and V_{CI}) and P vacancy (V_P).

Fig. S10 (a) Considered K absorption site and migration paths of the C₈P monolayer with V_{CII} . (b) Diffusion energy barriers of K migration on the defective C₈P monolayer. (c and d) Top and side views of the C₈PK₈ with V_{CII} .

	Lattice		Pos	sitions	
	Parameters		(frae	ctional)	
	(Å, °)	Atoms	x	у	Z.
C ₈ P	<i>a</i> = 7.313(7.298)	С	0.3301	0.0000	0.5000
	<i>b</i> = 7.313(7.298)	С	0.7589	0.8216	0.5000
	<i>c</i> = 20.9283	С	0.7589	0.1784	0.5000
	$lpha=\!\!eta=\!\!\gamma=$	С	0.9021	0.3216	0.5000
	90.0000	С	0.9021	0.6784	0.5000
		С	0.0805	0.7504	0.5000
		С	0.0805	0.2496	0.5000
		С	0.8301	0.5000	0.5000
		С	0.2589	0.3216	0.5000
		С	0.2589	0.6784	0.5000
		С	0.4021	0.8216	0.5000
		С	0.4021	0.1783	0.5000
		С	0.5802	0.2504	0.5000
		С	0.5802	0.7496	0.5000
		С	0.8309	0.0000	0.5000
		С	0.3309	0.5000	0.5000
		Р	0.0805	0.0000	0.5000
_		Р	0.5805	0.5000	0.5000

Table S1 Structural parameters of the C_8P monolayer obtained from PBE functional, lattice parameters in bracket are obtained with the PBEsol functional.

	Lattice		Pos	sitions	
	Parameters		(frae	ctional)	
	(Å, °)	Atoms	x	у	z
a-C7PN	a = 7.330(7.311)	С	0.3300	0.0000	0.5000
	b = 7.174(7.161)	С	0.7585	0.8240	0.5000
	<i>c</i> = 20.9283	С	0.7585	0.1760	0.5000
	$\alpha = \beta = \gamma =$	С	0.9013	0.3193	0.5000
	90.0000	С	0.9013	0.6807	0.5000
		С	0.0794	0.7504	0.5000
		С	0.0794	0.2496	0.5000
		С	0.8298	0.5000	0.5000
		С	0.2585	0.3240	0.5000
		С	0.2585	0.6760	0.5000
		С	0.4013	0.8193	0.5000
		С	0.4013	0.1807	0.5000
		С	0.5793	0.2504	0.5000
		С	0.5793	0.7496	0.5000
		Р	0.8880	0.0000	0.5000
		Р	0.5888	0.5000	0.5000
		Ν	0.8277	0.0000	0.5000
		Ν	0.3277	0.5000	0.5000

Table S2 Structural parameters of the α -C₇PN monolayer obtained from PBE functional, lattice parameters in bracket are obtained with the PBEsol functional.

	Lattice		Pos	sitions	
	Parameters	Parameters		(fractional)	
	(Å, °)	Atoms	x	у	z
β-C ₇ PN	<i>a</i> = 7.312(7.294)	С	0.9294	0.5728	0.5000
	<i>b</i> = 7.178(7.164)	С	0.0706	0.0728	0.5000
	c = 20.9283	С	0.5715	0.5707	0.5000
	$\alpha = \beta = \gamma =$	С	0.4285	0.0707	0.5000
	90.0000	С	0.7529	0.5003	0.5000
		С	0.2471	0.0000	0.5000
		С	0.9294	0.9272	0.5000
		С	0.0706	0.4272	0.5000
		С	0.5715	0.9293	0.5000
		С	0.4285	0.4293	0.5000
		С	0.4995	0.7500	0.5000
		С	0.5005	0.2500	0.5000
		С	0.7529	0.0000	0.5000
		С	0.2472	0.5000	0.5000
		Р	0.7468	0.2500	0.5000
		Р	0.2532	0.7500	0.5000
		Ν	0.0019	0.7500	0.5000
		Ν	-0.0019	0.2500	0.5000

Table S3 Structural parameters of the β -C₇PN monolayer obtained from PBE functional, lattice parameters in bracket are obtained with the PBEsol functional.

Bond length (Å)	C ₈ P	α -C ₇ PN	β -C ₇ PN
C-C	1.41~1.48	1.40~1.47	1.39~1.47
C-P	1.83	1.77~1.79	1.80
C-N		1.36	1.38
P-N		1.91	1.83

Table S4 Bond lengths in the C₈P, α -C₇PN, and β -C₇PN monolayers.

Table S5 Elastic constants of the C₈P, α -C₇PN, and β -C₇PN monolayers.

Parameters (N/m)	C ₈ P	α-C ₇ PN	β -C ₇ PN
<i>C</i> ₁₁	303.233	295.228	300.164
C_{12}	58.461	77.596	74.079
C_{66}	129.025	132.263	132.487

Table S6 Lattice parameters (Å) of the C_8PK_x , α - C_7PNK_x , and β - C_7PNK_x (x = 2, 4, 6, and 8).

Phase	<i>x</i> = 2	x = 4	<i>x</i> = 6	x = 8
$C_8 PK_x$	<i>a</i> = 7.35	<i>a</i> = 7.39	<i>a</i> = 7.39	<i>a</i> = 7.39
	<i>b</i> = 7.39	<i>b</i> = 7.40	<i>b</i> = 7.39	<i>b</i> = 7.38
α -C ₇ PNK _x	<i>a</i> = 7.45	<i>a</i> = 7.45	<i>a</i> = 7.44	<i>a</i> = 7.44
	<i>b</i> = 7.14	<i>b</i> = 7.14	<i>b</i> = 7.15	<i>b</i> = 7.14
β -C ₇ PNK _x	<i>a</i> = 7.37	<i>a</i> = 7.43	<i>a</i> = 7.43	<i>a</i> = 7.43
	<i>b</i> = 7.22	<i>b</i> = 7.17	<i>b</i> = 7.16	<i>b</i> = 7.15

References

- 1. Y. Wang, J. Lv, L. Zhu and Y. Ma, Comput. Phys. Commun., 2012, 183, 2063-2070.
- 2. Y. Wang, J. Lv, L. Zhu and Y. Ma, Phys. Rev. B, 2010, 82, 094116.
- 3. G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169.