Realizing high-stability anode for rechargeable magnesium battery via

in-situ-formed nanoporous Bi and nanosized Sn

Dachong Gu^a, Yuan Yuan^{a,b,c*}, Xianhao Peng^a, Dajian Li^a, Liang Wu^a, Guangsheng Huang^a, Jingfeng Wang^a, Fusheng Pan^{a,b}

^a National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing, 400000, China

^bChongqing Institute of New Energy Storage Materials and Equipment, Chongqing, 401122, China ^c School of Materials Science and Engineering, Central South University, Changsha, 410083, China

1 Experimental methods

Corresponding authors: Yuan Yuan, [yuanyuan17@cqu.edu.cn,](mailto:yuanyuan17@cqu.edu.cn) yuan.yuan.er@gmail.com

1.1 Material synthesis

The $Bi_2Sn_2O_7$ (BSO) sample was prepared according to previous reports ¹. The obtained BSO particles were heated at 600 ℃ for 3 h under a mixed gas flow of 95% Ar and 5% H_2 atmosphere to prepare Bi-Sn ω SnO₂-600 (BSS-600) alloys. The Bi- $Sn(\omega)SnO_2-400$ (BSS-400) and Bi-Sn $(\omega)SnO_2-500$ (BSS-500) alloys were prepared under the heated temperature was 400 \degree C and 500 \degree C with the same process, respectively.

1.2 Alloy characterization

 $N₂$ adsorption isotherms and pore size distributions were obtained at 77 K using a Micromeritics ASAP-2460 instrument. X-ray diffraction (XRD) measurements were carried out in a PANalytical X'Pert Powder instrument (Spectris Pte. Ltd, Netherlands) using Cu Kα radiation with a step size of 0.026° and a scanning speed of 4° per minute. X-ray photoelectron spectroscopy (XPS) was collected on an X-ray photoelectron spectrometer (Thermo Scientific K-Alpha, USA). All the high-resolution spectra were calibrated by referencing the binding energy of C 1s as 284.8 eV. The morphology and microstructure of the as-prepared samples were characterized by JEOL JSM-7800F scanning electron microscopy and transmission electron microscopy (TEM, FEI Talos F200S).

1.3 Electrochemical measurement

Electrolyte preparation. 0.4 M all phenyl complex (APC) in THF solution was prepared according to previous reports ². The obtained 0.4 M APC solution was used as the electrolyte for all half-cell experiments. For the preparation of 0.4 M $Mg(TFSI)₂/G2$ electrolyte, 0.935 g Mg(TFSI)₂ (99%, DoDoChem) was dispersed in 4 mL G2 (99.5%, water≤50 ppm, MkSeal). The 4 Å molecular sieves (1-1.6 mm, Aladdin) were added to the $Mg(TFSI)/G2$ electrolyte overnight before use. All operations are carried out in the Ar-filled glove box with water and oxygen less than 0.01 ppm.

Cell fabrication and measurements. The electrodes were prepared by mixing active materials (70 wt %), acetylene black (20 wt %), and poly (vinylidene fluoride) (PVDF, 10 wt %) using N-methyl-2-pyrrolidone (NMP) solvent. The above slurry was coated onto the stainless steel (SS) foil. The film was dried at 80 ℃ for 12 h to evaporate NMP in a vacuum oven. Electrode disks (diameter: 10 mm) were then cut out and the active material mass per electrode was about 1-2 mg cm⁻².

For half cells, $Mg/Bi-Sn@SnO₂ CR2032$ coins were assembled in an Ar-filled glove box to evaluate the electrochemical performance, using polished Mg foils as both the counter and reference electrodes and glass fiber (GF/A) as the separator. Galvanostatic discharge/charge tests were conducted using the Neware battery test systems at various current densities between 0.005 and 1 V (vs. Mg^{2+}/Mg) at room temperature. Cyclic voltammogram (CV) studies were performed at a potential window of 0-1 V (vs. Mg^{2+}/Mg) on a CHI660E electrochemical workstation (CH instrument, USA) with the desired scan rate. For *ex-situ* XRD and XPS characterization, the Mg//BSS-600 cells at different states during cycling were disassembled, and then the cycled BSS-600 electrodes were washed with THF before tests.

For full cells, $Mo₆S₈$ cathode and $V₂O₅$ -PAN were synthesized following previously published work ^{3, 4}. Galvanostatic discharge/charge experiments of cathode were run using a pre-magnesiated BSS-600 anode in 0.4 M Mg(TFSI) $_2$ /G2 electrolytes at the current density of 50 mA g^{-1} (calculated by Mo_6S_8 or V_2O_5 -PAN mass). The BSS-600 anodes were electrochemically pre-magnesiated by half-cell complete discharge. Magnesiated anodes were washed with THF prior to use and then dried in the glove box. The Mg/Mo_6S_8 and Mg/V_2O_5 -PAN full-cells were assembled using 0.4 M APC electrolytes as a control.

Fig. S1 (a) SEM image and (b) XRD pattern of the BSO annealed at 800 ℃ for 3 h in Ar atmosphere.

Fig. S2 High-angle annular dark-field scanning TEM (HAADF-STEM) of BSO.

Fig. S3 (a-c) SEM image and elemental mappings of BSO particles annealed at 600 ℃ for 1.5 h in 95% Ar and 5% H² atmosphere; (d) corresponding to XRD pattern.

Fig. S4 (a) SEM images and (b) corresponding to XRD pattern of BSO particles annealed at 650 °C for 3h in 95% Ar and 5% H_2 atmosphere.

Fig. S5 SEM image and elemental mappings of BSS-600 electrode after 20th charge.

Fig. S6 Discharge/charge profiles of the BSO electrode after different cycles.

Fig. S7 GITT curves at the first cycle obtained from the BSO//Mg, BSS-400//Mg, BSS-500//Mg and BSS-600//Mg half cells (10 min of reduction/oxidation at 20 mA g ¹ followed by 10 min of relaxation at OCV).

Fig. S8 First two discharge/charge curves of the BSS-600 electrode at 500 mA g⁻¹ test during the activation process.

Fig. S9 The *ex-situ* XRD pattern of the BSS-600 electrode at the 20th discharge to 0.18 V.

Fig. S10 *Ex-situ* XPS spectra of Mg 1s in the BSS-600 anodes at different discharge/charge status.

Fig. S11 The first five discharge/charge profiles of the pre-magnesiated BSS- $600/\text{Mg(TFSI)}_2/\text{Mo}_6S_8$ with a potential range of 0-1.8 V at the current density of 50 $mA g⁻¹$.

Table S1 The physical properties of as-prepared samples.

Table S2 The corresponding kinetic parameters calculated from Nyquist plots.

Electrode	$\text{Rs }(\Omega)$	$Rct(\Omega)$	CPE1(F)	D_{Mg2+} (cm ² s ⁻¹)
Pristine BSS-600	12.96	5989.00	9.95×10^{-6}	5.88×10^{-17}
Activated BSS-600	6.54	22.15	3.19×10^{-6}	1.17×10^{-15}

Calculation of the Mg2+ diffusion coefficient according to EIS:

$$
{D_{Mg}}^{2+}{=}\frac{R^2T^2}{2A^2{\rm n}_{Mg^{2+}}^4F^4C_{Mg^{2+}}^2\sigma^2}
$$

Here, A is the surface area of the electrode (0.785 cm^2) , n is the number of electrons per molecule during a reaction, F is the Faraday constant (96485 C mol⁻¹), C_0 is the bulk concentration of Mg^{2+} , R is the gas constant (8.314 J mol⁻¹ K⁻¹), T was the room temperature (298.15 K), and σ is the Warburg factor. σ has a relationship with the real part of impedance Z' , which is expressed as follows:

$$
Z' = R_s + R_{ct} + \sigma \omega^{-1/2}
$$

ω is the angular frequency which is equal to 2πf where f is the frequency in Hertz.

Calculation of the Mg2+ diffusion coefficient according to CV:

The Randles-Sevcik equation calculates the apparent Mg^{2+} diffusion coefficient at room temperature as follows:

$$
I_p = 269000 n^{3/2} A D_{Mg^{2+}}^{1/2} C_{Mg^{2+}} v^{1/2}
$$

Where v is the scanning rate (V s⁻¹), C_{Mg}^{2+} is the molar concentration of Mg²⁺, D_{Mg}^2 ²⁺ is the chemical diffusion coefficient (cm² s⁻¹), A is the surface area of the electrode and n is the number of electrons per molecule during the reaction.

References

- 1 Y. L. Xing, X. D. Kong, X. Guo, Y. Liu, Q. Y. Li, Y. Z. Zhang, Y. L. Sheng, X. P. Yang, Z. G. Geng and J. Zeng, *Adv. Sci.*, 2020, 7, 1902989.
- 2 O. Mizrahi, N. Amir, E. Pollak, O. Chusid, V. Marks, H. Gottlieb, L. Larush, E. Zinigrad and D. Aurbach, *J. Electrochem. Soc.*, 2008, 155, A103-A109.
- 3 E. Lancry, E. Levi, A. Mitelman, S. Malovany and D. Aurbach, *J. Solid State Chem.*, 2006, 179, 1879-1882.
- 4 R. Deng, Z. Wang, S. Tan, X. Huang, Z. Gao, Y. Fang, C. Chen, R. Wang, C. Xu, G. Huang, J. Wang and F. Pan, *Chem. Eng. J.*, 2024, 489, 151095.