### Supplementary Information

# Towards Efficient $CO_2RR$ Electrocatalysts: A Study of Structure and Properties of M–N–E Active Moieties Embedded in Biphenylene Framework (M = Mn, Fe, Co, Ni, Cu; E = C, B)

Zhengqin Zhao,<sup>a</sup> Andrey V. Zibarev,<sup>b</sup> Hui Wang,<sup>a,\*</sup> Jinbo Hao<sup>c</sup> and Lijia Luo<sup>a</sup>

<sup>a</sup> School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031,

P. R. China. E-mail: wanghui@swjtu.edu.cn (H. Wang)

<sup>b</sup> Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia

<sup>c</sup> School of Science, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China

#### Contents

#### 1. Figures

Figure S1. The differential charge density diagram of  $CO_2$  adsorbed at the M–B–C-, M–N–C-, and M–N–Bmodified BPN monolayers (M = Mn, Fe, Co, Ni, Cu).

**Figure S2.** The free energy diagrams of two-electron reaction coordinate for the M–B–C, M–N–C, and M–N–B active moieties.

Figure S3. The free energy diagrams for the two-electron reaction coordinate for various active moieties with M = Mn, Co, Ni, and Cu.

**Figure S4.** The free energy diagrams of the CO<sub>2</sub>RR reaction coordinate for the M–B–C, M–N–C and M–N–B (M=Mn, Fe, Co, Ni, Cu) active moieties.

**Figure S5.** Optimal reaction coordinates for the production of CH<sub>3</sub>OH and CH<sub>4</sub> from metal center atoms M (M = Mn, Fe, Co, Ni, and Cu) with different coordination environments.

**Figure S6.** The solid-state electron-energy band diagrams for the M–B–C, M–N–C, and M–N–B-modified BPN monolayers.

**Figure S7.** The projected DOS of the M–B–C, M–N–C, and M–N–B active moieties featuring the centers of electric-energy bands originated from d-AOs of the M atoms.

Figure S8. The COHP diagrams for the M–N–B active moieties with adsorbed CHO\* and COH\*.

#### 2. Tables

**Table S1.** Calculated energy, zero-point energy correction, enthalpy correction, and entropy contribution of free molecules.

Table S2. Calculated energy, zero-point energy correction, enthalpy correction, and entropy contribution of adsorbed molecules.

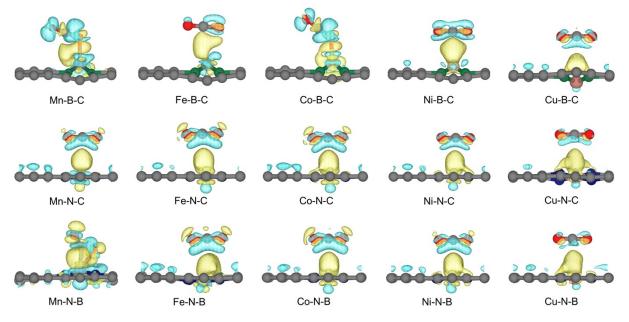
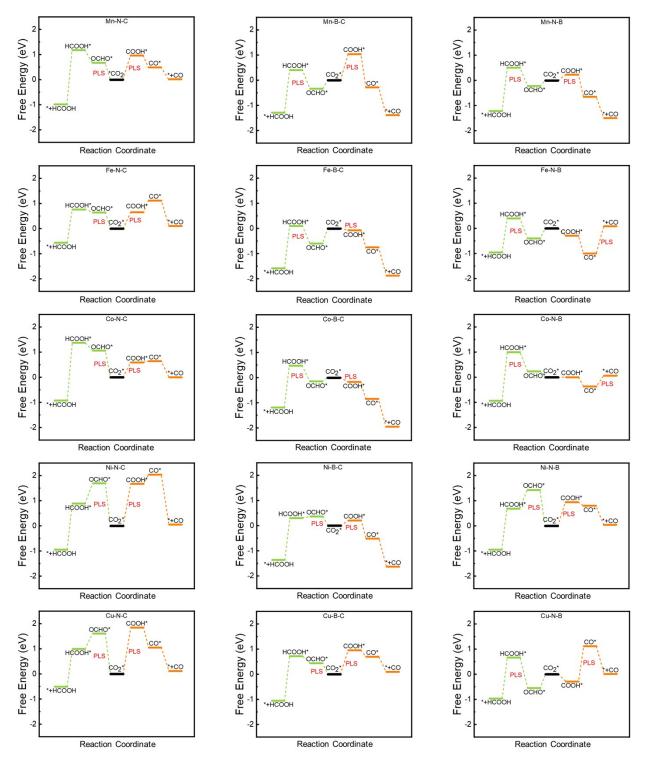

**Table S3.** The potential limiting step and corresponding limiting potential  $U_L$  (V) of the CO<sub>2</sub>RR on the M–N–C, M–B–C, and M–N–B active moieties.

 Table S4. Bader charges and CTs in the M-N-E-modified BPN frameworks.


**Table S5.** The bonding energy for hydrogen adsorption of various active moieties in M–B–C, M–N–C and M–N–B (M= Mn, Fe, Co, Ni, Cu).

**Table S6.** The optimized configurations and Gibbs free energy  $\Delta G$  (eV) of reactants and intermediates adsorbed at the Fe–N–B active moiety, as well as the SBIs lengths between intermediates and B (Å).

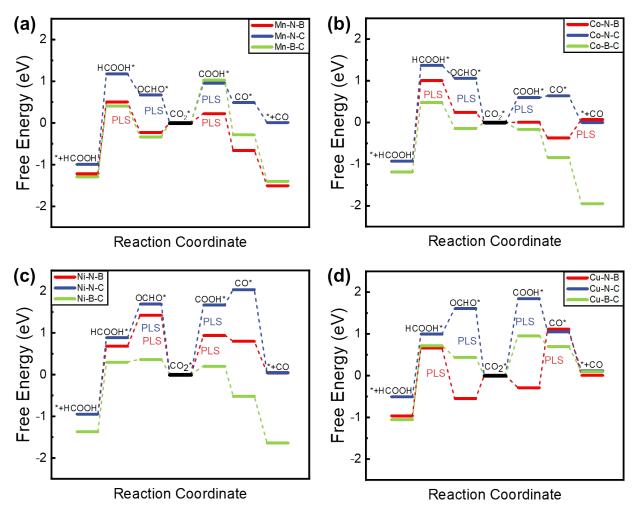
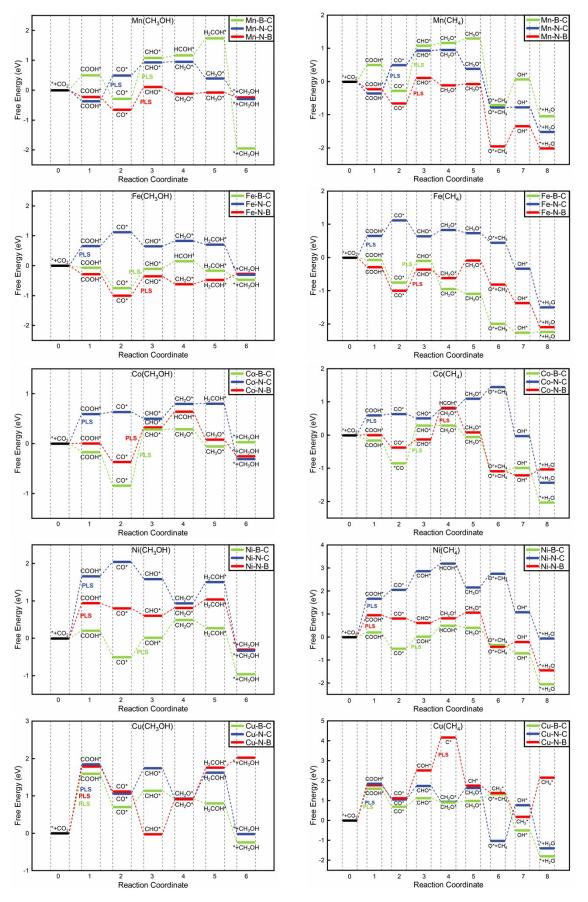
## 1. Figures

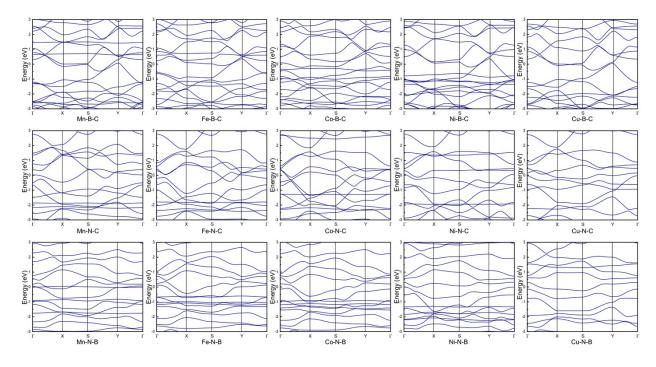


**Figure S1.** The differential charge density diagram of CO<sub>2</sub> adsorbed at the M–B–C-, M–N–C-, and M–N–B-modified BPN monolayers (M = Mn, Fe, Co, Ni, Cu). Color code: yellow, charge accumulation; cyan, charge depletion. The isosurface  $\rho = 0.00025$  e Bohr<sup>-3</sup>.

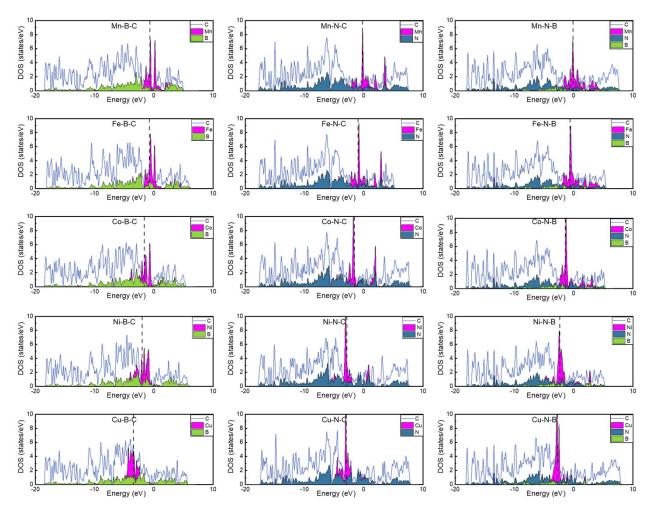


**Figure S2.** The free energy diagrams of two-electron reaction coordinate for the M–B–C, M–N–C, and M–N–B active moieties.

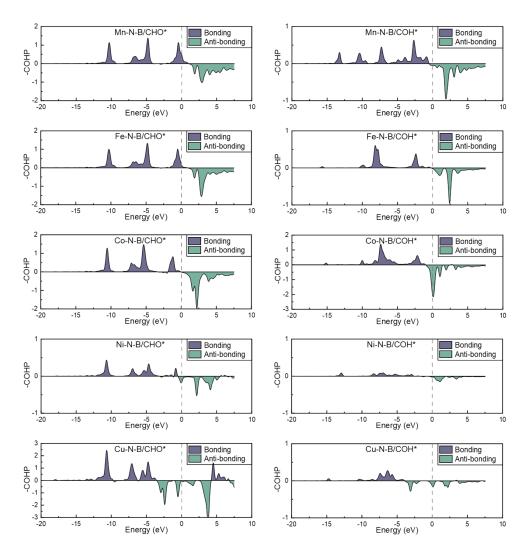





Figure S3. The free energy diagrams for the two-electron reaction coordinate for various active moieties with M = Mn, Co, Ni, and Cu.




**Figure S4.** The free energy diagrams of the  $CO_2RR$  reaction coordinate for the M–B–C, M–N–C and M–N–B (M = Mn, Fe, Co, Ni, Cu) active moieties.




**Figure S5.** Optimal reaction coordinates for the production of  $CH_3OH$  and  $CH_4$  from metal center atoms M (M = Mn, Fe, Co, Ni, and Cu) with different coordination environments.



**Figure S6.** The solid-state electron-energy band diagrams for the M–B–C, M–N–C, and M–N– B-modified BPN monolayers.



**Figure S7.** The projected DOS of the M–B–C, M–N–C, and M–N–B active moieties featuring the centers of electric-energy bands originated from d-AOs of the M atoms marked by vertical dotted lines.



**Figure S8.** The COHP diagrams for the M–N–B active moieties with adsorbed CHO\* and COH\*. Color code: purple, bonding states; green, antibonding states.

## 2. Tables

| Species            | E      | ZPE  | $\int C_{\rm p} dT$ | TS   |
|--------------------|--------|------|---------------------|------|
| CO <sub>2</sub>    | -23.31 | 0.31 | 0.10                | 0.66 |
| СО                 | -15.26 | 0.13 | 0.09                | 0.61 |
| НСООН              | -29.71 | 0.88 | 0.11                | 0.86 |
| CH <sub>3</sub> OH | -29.75 | 1.39 | 0.11                | 0.82 |
| $CH_4$             | -23.45 | 1.20 | 0.10                | 0.60 |
| $H_2O$             | -14.33 | 0.57 | 0.10                | 0.67 |
| H <sub>2</sub>     | -6.91  | 0.27 | 0.09                | 0.40 |

**Table S1.** Calculated energy, zero-point energy correction, enthalpy correction, and entropy contribution of free molecules, eV.

**Table S2.** Calculated energy, zero-point energy correction, enthalpy correction, and entropy contribution of adsorbed molecules, eV.

| Species            | ZPE  | $\int C_{\rm p} dT$ | TS   |
|--------------------|------|---------------------|------|
| СООН               | 0.62 | 0.11                | 0.22 |
| OCHO               | 0.69 | 0.10                | 0.21 |
| СО                 | 0.13 | 0.09                | 0.61 |
| НСООН              | 0.98 | 0.11                | 0.16 |
| СНО                | 0.48 | 0.08                | 0.16 |
| СОН                | 0.48 | 0.05                | 0.05 |
| С                  | 0.08 | 0.07                | 0.03 |
| CH <sub>2</sub> O  | 0.76 | 0.10                | 0.22 |
| НСОН               | 0.79 | 0.08                | 0.13 |
| СН                 | 0.35 | 0.04                | 0.07 |
| CH <sub>2</sub> OH | 1.12 | 0.08                | 0.19 |
| CH <sub>3</sub> O  | 1.10 | 0.11                | 0.18 |
| $CH_2$             | 0.63 | 0.06                | 0.09 |
| CH <sub>3</sub>    | 0.96 | 0.07                | 0.08 |
| ОН                 | 0.36 | 0.05                | 0.08 |

| Active moiety | Products           | PLS                                        | $U_L$ |
|---------------|--------------------|--------------------------------------------|-------|
|               | СО                 | $COOH^* + H^+ + e^- \rightarrow CO^*$      | -0.85 |
| MNC           | НСООН              | $CO_2 + * + H^+ + e^- \rightarrow OHCO^*$  | -0.67 |
| Mn–N–C        | CH <sub>3</sub> OH | $COOH^* + H^+ + e^- \rightarrow CO^*$      | -0.85 |
|               | $CH_4$             | $COOH^* + H^+ + e^- \rightarrow CO^*$      | -0.85 |
|               | СО                 | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$  | -0.66 |
| E- N C        | НСООН              | $CO_2 + * + H^+ + e^- \rightarrow OHCO^*$  | -0.65 |
| Fe–N–C        | CH <sub>3</sub> OH | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$  | -0.66 |
|               | CH <sub>4</sub>    | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$  | -0.60 |
|               | СО                 | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$  | -0.60 |
|               | НСООН              | $CO_2 + * + H^+ + e^- \rightarrow OHCO^*$  | -1.06 |
| Co-N-C        | CH <sub>3</sub> OH | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$  | -0.60 |
|               | $CH_4$             | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$  | -0.60 |
|               | СО                 | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$  | -1.67 |
| N' N C        | НСООН              | $CO_2 + * + H^+ + e^- \rightarrow OHCO^*$  | -1.69 |
| Ni–N–C        | CH <sub>3</sub> OH | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$  | -1.6  |
|               | $CH_4$             | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$  | -1.6  |
|               | СО                 | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$  | -1.8  |
|               | НСООН              | $CO_2 + * + H^+ + e^- \rightarrow OHCO^*$  | -1.6  |
| Cu–N–C        | CH <sub>3</sub> OH | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$  | -1.8  |
|               | $CH_4$             | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$  | -1.8  |
|               | СО                 | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$  | -0.50 |
|               | НСООН              | $OHCO^{+}H^{+}+e^{-}\rightarrow HCOOH^{+}$ | -0.74 |
| Mn-B-C        | CH <sub>3</sub> OH | $CO^* + H^+ + e^- \rightarrow CHO^*$       | -1.3  |
|               | $CH_4$             | $CO^* + H^+ + e^- \rightarrow CHO^*$       | -1.3  |
|               | СО                 | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$  | 0.07  |
|               | НСООН              | $OHCO*+H^++e^- \rightarrow HCOOH*$         | -0.6  |
| Fe-B-C        | CH <sub>3</sub> OH | $CH_2O^* + H^+ + e^- \rightarrow CH_2OH^*$ | -0.7  |
|               | $CH_4$             | $CO^* + H^+ + e^- \rightarrow CHO^*$       | -0.63 |
|               | СО                 | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$  | 0.17  |
| Со-В-С        | НСООН              | $OHCO*+H^++e^- \rightarrow HCOOH*$         | -0.62 |
|               | CH <sub>3</sub> OH | $CO^* + H^+ + e^- \rightarrow CHO^*$       | -1.13 |

**Table S3.** The potential limiting step and corresponding limiting potential  $U_L$  (V) of the CO<sub>2</sub>RR on the M–N–C, M–B–C, and M–N–B active moieties <sup>*a*</sup>.

|          | $CH_4$             | $CO^* + H^+ + e^- \rightarrow CHO^*$                          | -1.13 |
|----------|--------------------|---------------------------------------------------------------|-------|
|          | СО                 | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$                     | -0.21 |
|          | НСООН              | $CO_2 + * + H^+ + e^- \rightarrow OHCO^*$                     | -0.37 |
| Ni-B-C   | CH <sub>3</sub> OH | $CO^* + H^+ + e^- \rightarrow CHO^*$                          | -0.69 |
|          | $CH_4$             | $CO^* + H^+ + e^- \rightarrow CHO^*$                          | -0.69 |
|          | СО                 | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$                     | -1.60 |
| Cra D C  | НСООН              | $CO_2 + * + H^+ + e^- \rightarrow OHCO^*$                     | -0.44 |
| Cu–B–C   | CH <sub>3</sub> OH | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$                     | -1.60 |
|          | $CH_4$             | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$                     | -1.60 |
|          | СО                 | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$                     | 0.23  |
|          | НСООН              | $OHCO*+H^++e^- \rightarrow HCOOH*$                            | -0.73 |
| Mn-N-B   | CH <sub>3</sub> OH | $CO^* + H^+ + e^- \rightarrow CHO^*$                          | -0.77 |
|          | $CH_4$             | $CO^* + H^+ + e^- \rightarrow CHO^*$                          | -0.77 |
|          | СО                 | $CO^* \rightarrow CO + *$                                     | -1.08 |
| E. N.D.  | НСООН              | $OHCO*+H^++e^- \rightarrow HCOOH*$                            | -0.80 |
| Fe–N–B   | CH <sub>3</sub> OH | $CO^* + H^+ + e^- \rightarrow CHO^*$                          | -0.63 |
|          | $CH_4$             | $CO^* + H^+ + e^- \rightarrow CHO^*$                          | -0.63 |
|          | СО                 | $CO^* \rightarrow CO + *$                                     | -0.44 |
| Co N D   | НСООН              | $OHCO*+H^++e^- \rightarrow HCOOH*$                            | -0.76 |
| Co-N-B   | CH <sub>3</sub> OH | $CO^* + H^+ + e^- \rightarrow COH^*$                          | -0.69 |
|          | $CH_4$             | $\rm CHO^{*} + \rm H^{+} + e^{-} \rightarrow \rm CH_{2}O^{*}$ | -0.94 |
|          | СО                 | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$                     | -0.95 |
| NI: NI D | НСООН              | $CO_2 + * + H^+ + e^- \rightarrow OHCO^*$                     | -1.43 |
| Ni–N–B   | CH <sub>3</sub> OH | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$                     | -0.95 |
|          | $CH_4$             | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$                     | -0.95 |
|          | СО                 | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$                     | -1.79 |
|          | НСООН              | $OHCO*+H^++e^- \rightarrow HCOOH*$                            | -1.21 |
| Cu–N–B   | CH <sub>3</sub> OH | $CO_2 + * + H^+ + e^- \rightarrow COOH^*$                     | -1.79 |
|          | $CH_4$             | $\rm COH^{*+}H^{+}+e^{-}\rightarrow C^{*}$                    | -1.97 |

<sup>*a*</sup> Symbol \* denotes adsorption / adsorbed state.

| Triad | М  | Bader charge | Original charge | Bader CT difference |
|-------|----|--------------|-----------------|---------------------|
|       | Mn | 12.43        | 13              | -0.57               |
|       | Fe | 7.70         | 8               | -0.30               |
| М-В-С | Co | 8.97         | 9               | -0.03               |
|       | Ni | 10.08        | 10              | 0.08                |
|       | Cu | 10.92        | 11              | -0.08               |
|       | Mn | 11.78        | 13              | -1.22               |
|       | Fe | 7.00         | 8               | -1.00               |
| М-N-С | Co | 8.05         | 9               | -0.95               |
|       | Ni | 9.10         | 10              | -0.90               |
|       | Cu | 10.06        | 11              | -0.94               |
|       | Mn | 11.93        | 13              | -1.07               |
|       | Fe | 7.24         | 8               | -0.76               |
| M–N–B | Co | 8.42         | 9               | -0.58               |
|       | Ni | 9.46         | 10              | -0.54               |
|       | Cu | 10.34        | 11              | -0.66               |

Table S4. Bader charges and CTs in the M-N-E-modified BPN frameworks, e.

|    | М-В-С | M–N–C | M–N–B |
|----|-------|-------|-------|
| Mn | -4.83 | -2.08 | -0.97 |
| Fe | -4.11 | -3.79 | -0.97 |
| Со | -2.80 | -2.14 | -0.51 |
| Ni | -2.03 | -0.19 | 0.58  |
| Cu | -1.57 | 2.08  | 0.59  |

**Table S5.** The bonding energy for hydrogen adsorption of various active moieties in M–B–C, M– N–C and M–N–B (M= Mn, Fe, Co, Ni, Cu), eV.

**Table S6.** The optimized configurations and Gibbs free energy  $\Delta G$  (eV) of reactants and intermediates adsorbed at the Fe–N–B active site, as well as the SBIs lengths between intermediates and B (Å) <sup>*a*</sup>.

| Reactants / intermediates |                     | Optimized configurations |   | ΔG    | SBIs |
|---------------------------|---------------------|--------------------------|---|-------|------|
| СО                        | COOH*               | <b>\$</b> \$             |   | -0.28 | 1.93 |
|                           | CO*                 | 8                        |   | -0.99 | 2.11 |
|                           | *+CO                | 8                        | : | 0.09  | -    |
| НСООН                     | OCHO*               |                          |   | -0.40 | 1.45 |
|                           | HCOOH*              | <b>2</b> 2               |   | 0.40  | 2.67 |
|                           | *+HCOOH             |                          |   | -0.95 | -    |
| CH3OH                     | CHO*                |                          |   | -0.36 | 1.91 |
|                           | CH <sub>2</sub> O*  |                          |   | -0.61 | 1.80 |
|                           | CH <sub>2</sub> OH* |                          |   | -0.48 | 1.76 |

|     | *+CH <sub>3</sub> OH |           | €€                                      | -0.27 | -    |
|-----|----------------------|-----------|-----------------------------------------|-------|------|
| CH4 | OCH <sub>3</sub>     | 33        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | -0.08 | 2.65 |
|     | O*+CH <sub>4</sub>   |           | <del>ک</del>                            | -0.81 | 1.34 |
|     | OH*                  | 88        |                                         | -1.37 | 2.44 |
|     | *+H <sub>2</sub> O   | <b>22</b> | نون<br>(1910-19-10-19                   | -2.10 | -    |

<sup>*a*</sup> Color code: C gray, H white, B green, N blue, O red, Fe cyan.