Supporting Information

Flower-like carbon confined disordered rock-salt LiVO₂ anode with sandwich structure for fast-charging and stable lithium storage

Sicong Shen^a, Bing Sun^{a,*}, Xiaomeng Bai^a, Song Yang^a, Dongmei Zhang^a, Cunyuan Pei^a, Pengju Li^a, Shibing Ni^{a,*}

^a Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials,
College of Materials and Chemical Engineering, China Three Gorges University, Yichang,
443002, China

* Corresponding Authors.

E-mail addresses: <u>bsun1010@sina.cn</u> (B. Sun); <u>shibingni07@126.com</u> (S. Ni).

^{*} Corresponding Authors.

E-mail addresses: <u>bsun1010@sina.cn</u> (B. Sun); <u>shibingni07@126.com (S. Ni)</u>.

Fig. S1. XRD pattern of LiVO₂.

Fig. S2. Rietveld refinement of the XRD patterns for LVO_2 and $LiVO_2/NC$ NFs.

Fig. 83. TG curve of LiVO₂/NC NFs.

Fig. S4. (a) Survey XPS spectrum of LiVO₂/NC NFs, high-resolution XPS spectra of (b) C 1s,

(c) N 1s, (d) O 1s and (e) V 2p.

Fig. S5. SEM images of the NC NFs at low (a) and high (b) magnification.

Fig. S6. The charge and discharge curves of pristine LiVO₂.

Fig. S7. Initial galvanostatic charge/discharge curves of the NC NFs at 0.5 A g^{-1} .

Fig. S8. Representative charge/discharge curves of the $LiVO_2/NC$ NFs electrode at a specific current of 0.5 A g⁻¹ during the 4 periodic rate tests.

Fig. S9. The electrochemical performance of $LiVO_2$, (a) rate performance at various current densities, (b) long cycling performance at high current density.

Fig. S10. A single GITT procedure for the LiVO₂/NC NFs electrode during the discharge process.

Table S1. Description of the Hamilton's test¹ and its application regarding the R_{Bragg} differences between theFm-3m and Fd-3m refinements.

Hamilton's test							
Aim	Formula	Method					
To define the pertinence of the addition of new parameters in the refinement	Hypothesis dimension: $h = m_a - m_b$ $m_{a,b}$: number of refined parameters in case a or b N number of degrees of freedom: N = n - h n: number of reflections Confidence coefficient: $R_{h,N,\alpha}$ α : level of trust (1, 5, 10%,)	1) Calculation of the relation between the R_{Bragg} -factor of both cases 2) Confrontation of this relation and the Hamilton's confidence coefficient					

Comparison of the 2 refinement models				
a = Fd-3m				
$\mathbf{B} = \mathbf{Fm} \mathbf{-3m}$				
R _{Bragg} a	7.61			
R _{Bragg} b	5.24			
R a/b	1.45			
ma=	13			
mb=	11			
h=	2			
n=	18			
N=	16			
R _{h,N,1%} =	1.382			
R _{h,N,5%} =	1.295			
R _{h,N,10%} =	1.113			

Actually, the XRD patterns of $LiVO_2$ and $LiVO_2/NC$ NFs are similar. Rietveld refinements were thus undertaken to discriminate both space groups. Results point towards the Fm-3m space group by comparison of the *R* factors (Residual Error of Fit) obtained (5.24% vs. 7.61% for Fd-3m). Following the Hamilton's test, this *R* difference is significant enough to confirm that the disordered rock salt phase was synthesized.

Table S2. Results of refinement of LVO_2 and $LiVO_2/NC$ NFs.

Sample	Space Group	α, β, γ	a	b	c
² Reported LiVO ₂	R-3m	90, 90, 120	2.84066	2.84066	14.81506
LiVO ₂	Fd-3m	90, 90, 90	8.21719	8.21719	8.21719
LiVO ₂ /NC NFs	Fm-3m	90, 90, 90	4.11435	4.11435	4.11435

Reference:

- 1. W. C. Hamilton, Acta Cryst., 1965, 18, 502-510.
- 2. C. Johann, B. Christian H. C. Jin, et al., J. Phys. Chem. C 2020, 124, 3, 2229–2237.