Supporting Information

Ultra-Robust, Highly Stretchable and Ambient Temperature Rapid Self-Healing Polyurethane/Graphene Elastomers Enabled by Multi-Type Hydrogen Bonds

Xiaobo Zhu^{1,2}, Yu Hao^{1,2,3}, Liang-Feng Huang^{1,2,3}, Haichao Zhao^{1,2,*}, and Liping Wang^{1,2,*}

¹Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

²University of Chinese Academy of Sciences, Beijing 100049, China

³Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

*E-mail: zhaohaichao@nimte.ac.cn (H. Zhao); wangliping@nimte.ac.cn (L. Wang).

Figure S1. Synthesis route of T-AMPD chain extender.

Figure S2. ¹H NMR spectra (400 MHz, DMSO): (a) Thymine-1-acetic acid and (b) T-AMPD chain extender.

Figure S3. Synthesis route of T-AMPD/AD-PU.

Figure S4. ¹H NMR spectra (400 MHz, DMSO) of T-AMPD/AD-PU.

Figure S5. Schematic diagram of the preparation process of A/rGO nanosheets.

Figure S6. (a) TEM-EDS and (b) SPM images of GO nanosheet.

Figure S7. TEM-EDS images of A/rGO nanosheet.

Figure S8. TG curves of samples.

Figure S9. Optical photographs of A/rGO nanosheets dispersed in water for 110 days

Figure S10. Micro-CT images of T/AGs-0.5%-PU.

Figure S11. DSC curves of PU composites.

Figure S12. TG curves of PU composites.

Figure S13. (a) 2D WAXS and (b) 2D SAXS patterns for T/AGs-0.5%-PU at different stretch-release strains.

Figure S14. Stretch testing photographs of T/AGs-0.5%-PU.

Figure S15. Photographs showing the detailed self-healing process of T/AGs-0.5%-PU: (a) cut, (b) healed, (c) stretched to 1100%, and (d) after stretched.

Table S1 Comparison of ultimate tensile strength, elongation at break, toughness, and Young's modulus of PU

composites.

Samples	Ultimate tensile	Elongation at	Toughness	Young's modulus
	strength (MPa)	break (%)	(MJ m ⁻³)	(MPa)
T-AMPD/AD-PU	30.29 ± 2.41	1631.39 ± 17.24	215.31 ± 28.23	17.42 ± 0.72
T/AGs-0.2%-PU	36.79 ± 1.84	1653.82 ± 20.13	245.34 ± 27.81	19.82 ± 0.68
T/AGs-0.5%-PU	46.60 ± 2.15	1736.89 ± 18.17	337.19 ± 30.64	24.40 ± 1.15
T/AGs-1.0%-PU	41.89 ± 2.67	1536.73 ± 19.58	292.59 ± 30.92	25.64 ± 1.16

 Table S2 Comparison of ultimate tensile strength, elongation at break, self-healing efficiency, and self-healing

 conditions of PU composites under different self-healing times.

Generaliza	Ultimate tensile Elongation at		Self-healing	Self-healing
Samples	strength (MPa)	break (%)	efficiency (%)	times
T-AMPD/AD-PU	26.40 ± 1.42	1407.68 ± 12.14	87.16 ± 1.84	RT, 2 h
T/AGs-0.2%-PU	31.82 ± 1.67	1427.84 ± 16.87	86.49 ± 1.31	RT, 2 h
T/AGs-0.5%-PU	39.90 ± 1.61	1484.36 ± 17.62	85.62 ± 1.16	RT, 2 h
T/AGs-1.0%-PU	32.79 ± 1.77	1203.47 ± 18.43	78.28 ± 1.48	RT, 2 h
T/AGs-0.5%-PU-0.5 h	18.70 ± 1.14	698.79 ± 10.83	40.13 ± 1.62	RT, 0.5 h
T/AGs-0.5%-PU-1 h	28.75 ± 0.97	1069.21 ± 10.24	61.70 ± 1.87	RT, 1 h
T/AGs-0.5%-PU-1.5 h	35.59 ± 1.79	1322.79 ± 13.47	76.37 ± 1.44	RT, 1.5 h

Ref.	Self- healing motif	Ultimate tensile strength (MPa)	Elongation at break (%)	Toughness (MJ m ⁻³)	Young's modulus (MPa)	Self- healing efficiency (%)	Function healing	Self- healing times
1	Disulfides	6.8	923	26.9	1.5	88	Yes	RT. 2 h
2	Disulfides	0.81	3100	13.0	N/A	80	N/A	RT. 2 h
3	Metal- ligand	10	607	46.1	N/A	92	Yes	RT. 5 min
4	H-bond	10.3	596.2	37.8	31.5	90	N/A	RT. 1 h
5	H-bond	1.6	1400	N/A	N/A	88	N/A	RT. 1.5 h
6	H-bond	12.86	1.26	N/A	1560	99	N/A	RT. 1 h
7	Metal- ligand	3.36	623	10.4	30.7	73.2	N/A	RT. 2 h
8	H-bond+ Disulfides	0.096	1320	N/A	N/A	93	Yes	RT. 2 h
9	H-bond+ O-B bond	5.5	2000	30	N/A	97.6	Yes	RT. 2 h
This Work	H-bond	46.60	1736.89	337.19	24.40	85.62	Yes	RT. 2 h

Table S3 Comparison of the proposed T/AGs-0.5%-PU elastomer with other reported polymers with self-healing

ability within 2 h at room temperature.

Table S4 Oxygen transmission rates of the PU composites.

Samples	Oxygen transmission rates $(m^3 m^{-2} d^{-1})$
T-AMPD/AD-PU	$8.39 \times 10^{-3} \pm 3.18 \times 10^{-3}$
T/AGs-0.2%-PU	$9.57\times 10^{-5}\pm 2.60\times 10^{-5}$
T/AGs-0.5%-PU	$3.45\times 10^{-5}\pm 8.94\times 10^{-6}$
T/AGs-1.0%-PU	$2.23\times 10^{-5}\pm 4.27\times 10^{-6}$

References

- [1] S. M. Kim, H. Jeon, S. H. Shin, S. A. Park, J. Jegal, S. Y. Hwang, D. X. Oh, J. Park, Adv. Mater. 2018, 30, 1705145.
- [2] A. Rekondo, R. Martin, A. R. De Luzuriaga, G. Cabañero, H. J. Grande, I. Odriozola, *Mater. Horiz.* 2014, 1, 237-240.
- [3] Y. Wang, Q. Guo, G. Su, J. Cao, J. Liu, X. Zhang, Adv. Funct. Mater. 2019, 29, 1906198.
- [4] X. Zhu, W. Zheng, H. Zhao, L. Wang, J. Mater. Chem. A 2021, 9, 20737-20747.
- [5] C. Liu, H. Wu, Y. Qiang, H. Zhao, L. Wang, Corros. Sci. 2021, 184, 109355.
- [6] J. H. Xu, J. Y. Chen, Y. N. Zhang, T. Liu, J. J. Fu, Angew. Chem. Int. Edit. 2021, 60, 7947-7955.
- [7] D. Mozhdehi, S. Ayala, O. R. Cromwell, Z. Guan, J. Am. Chem. Soc. 2014, 136, 16128-16131.
- [8] H. Guo, Y. Han, W. Zhao, J. Yang, L. Zhang, Nat. Commun. 2020, 11, 2037.
- [9] J. Tolvanen, M. Nelo, J. Hannu, J. Juuti, H. Jantunen, Adv. Sci. 2021, 8, 2103235.