Interfacial Integration of Ultra-Thin Flexible Electrochemical Capacitors via Vacuum Filtration based on Gelatinized Fibrous Membranes

Qian Xie^{‡1}, Chengjie Lu^{‡1}, Chengjie Yi¹, Tao Shui¹, Nosipho Moloto², Jiacheng Liu³, Song-Zhu Kure-Chu³, Takehiko Hihara³, Wei Zhang¹*, ZhengMing Sun¹

¹School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China.
 ²Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits2050, South Africa.

³Department of Materials Function and Design, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan.

*Corresponding authors: w69zhang@seu.edu.cn

‡ Qian Xie and Chengjie Lu contributed equally to this work.

Figure S1. CV curves and GCD curves the MXene SSC based on PAN/PVA under 1-hour crosslinking.

Figure S2. Optical photograph of the filtered electrode: (a) PANI/MXene; (b) NVO/MXene; (c) ZVO/MXene.

Figure S3. The cross-sectional schematic diagram of the device with porous all-inone structure in the simulation and geometric parameters.

Figure S4. Schematic diagram of the integrated series-connected SSC.

Table S1. Swelling test results of PAN/PVA membranes under different cross-linking times.

Cross-linking	Polymer	Average molecular weight	Cross-linking density	Gel content
Time (min)	density ρ_m	between crosslinking points ρ (mol cm ⁻³)		W (%)
	(g cm ⁻³)	$m_c(g \text{ mol}^{-1})$		
0	0.3931	134.8391	0.0029	45.7172
20	0.5596	126.7809	0.0044	52.9220
60	0.6628	114.4689	0.0058	66.1251
120	0.7607	95.6587	0.0080	75.4401
240	0.7213	60.8322	0.0119	89.5709

Electrode	Electrolyte	Maximum Power	Maximum Energy	Reference
		density	density	
		(mW cm - ³)	(mWh cm ⁻³)	
Fe _x O _y //MXene	PVA-KOH	303.8	0.8431	[1]
2D carbon	EMIMBF ₄	470	8.4	[2]
BP/MnO ₂	PVA-Na ₂ SO ₄	58.6	0.59	[3]
LSG/VO _x	PVA-LiCl	1000	7.7	[4]
MoS ₂ //graphene/CN	Li ₂ SO ₄	75	16.36	[5]
Т				
Graphene//GO	PVA-KOH	1260	4.78	[6]
CNT//MnO ₂	Na ₂ SO ₄	320	2.12	[7]
Ni@CNT	PVA-KOH	440	1.39	[8]
MnO ₂ //V ₂ O ₅	PVA-Na ₂ SO ₄	100	10.18	[9]
Ti ₃ C ₂ -Cu	H_2SO_4	8	0.1033	[10]
$Mn(OH)_2//Fe_2O_3$	LiNO ₃	123.57	5.125	[11]
Wood Carbon	КОН	2382	0.99	[12]
Si	EMI-TFSI	9312	7.65	[13]
ZnCo ₂ O ₄ //Fe ₃ O ₄	PVA-KOH	166.7	2.32	[14]
SiC	PVA-KCl	2800	1.31	[15]
MXene/wood	PAM-H ₂ SO ₄	337	3	[16]
PANI-CNT	PVA-H ₂ SO ₄	609.7	11.4	[17]
CP@NCOH/NF//GH	PVA-KOH	750	4.1	[18]
/FNP/NF				
PUCNT/RGO	PVA-H ₃ PO ₄	2031.2	8.63	[19]
Tungstate-PANI	Neutral electrolytes	440	37	[20]
MXene//PANI	PAN/PVA-H ₂ SO ₄	2873	7.1	This work
PANI//NH ₄ V ₄ O ₁₀	PAN/PVA-	22.7	22.3	This work
	(NH ₄) ₂ SO ₄			
NH ₄ V ₄ O ₁₀ //Zn ₃ V ₃ O ₈	PAN/PVA-Zn(OTf) ₂	31.8	41.8	This work

Table S2. Comparison of the capacitance and energy density of our all-in-one devices with recently reported electrochemical capacitors.

Reference

[1] A. M. Patil, S. Moon, A. A. Jadhav, J. Hong, K. Kang, S. C. Jun, Adv. Funct. Mater. **2023**, 33, 2305264.

[2] L. Yao, Q. Wu, P. Zhang, J. Zhang, D. Wang, Y. Li, X. Ren, H. Mi, L. Deng, Z. Zheng, Adv. Mater. **2018**, 30, 1706054.

[3] Q. Yin, H. Jia, G. Liu, Q. Ji, Adv. Funct. Mater. 2022, 32, 2111177.

[4] A. Huang, M. F. El-Kady, X. Chang, M. Anderson, C.-W. Lin, C. L. Turner, R. B. Kaner, Adv. Energy Mater. **2021**, 11, 2100768.

[5] Z. Bo, X. Cheng, H. Yang, X. Guo, J. Yan, K. Cen, Z. Han, L. Dai, Adv. Energy Mater. **2022**, 12, 2103394.

[6] F. Liu, L. Zeng, Y. Chen, R. Zhang, R. Yang, J. Pang, L. Ding, H. Liu, W. Zhou, Nano Energy **2019**, 61, 18-26.

[7] Y. Wang, S. Y. Su, L. J. Cai, B. C. Qiu, N. Wang, J. Xiong, C. Yang, X. M. Tao,Y. Chai, Adv. Energy Mater. 2019, 9, 1900037.

[8] Y. Jiang, C. Zhou, J. Liu, Energy Storage Mater. 2018, 11, 75-82.

[9] L. Lyu, K. Seong, J. Kim, W. Zhang, X. Jin, D. Kim, Y. Jeon, J. Kang, Y. Piao, Nano-Micro Lett. **2019**, 11, 88.

[10] Y. Bai, C. Liu, T. Chen, W. Li, S. Zheng, Y. Pi, Y. Luo, H. Pang, Angew. Chem. Int. Ed. **2021**, 60, 25318.

[11] J. Li, S. Luo, B. Zhang, J. Lu, W. Liu, Q. Zeng, J. Wan, X. Han, C. Hu, Nano Energy **2021**, 79, 105410.

[12] F. Wang, J. Y. Cheong, J. Lee, J. Ahn, G. Duan, H. Chen, Q. Zhang, I.-D. Kim, S. Jiang, Adv. Funct. Mater. **2021**, 31, 2101077.

[13] R. S. Gao, J. Tang, X. L. Yu, S. Q. Lin, K. Zhang, L.-C. Qin, Adv. Funct. Mater. **2020**, 30, 2002200.

[14] D. Kong, Y. Wang, S. Huang, J. Hu, Y. Lim, B. Liu, S. Fan, Y. Shi, H. Yang, Energy Storage Mater. **2019**, 23, 653-663.

[15] W. Li, Q. Liu, Z. Fang, L. Wang, S. Chen, F. Gao, Y. Ji, W. Yang, X. S. Fang, Adv. Energy Mater. **2019**, *9*, 1900073.

[16] D. Zhang, K. Yang, T. Zhang, M. Luo, M. Li, Z. Li, C. Liu, Y. Ling, W. Chen, X. Zhou, Chem. Eng. J. 2023, 460, 141733.

[17] S. Lee, J. Kim, H. Yu, D. Lee, S. Hong, S. Kim, S. Choi, N. Kim, H. Jeong, Chem. Eng. J. **2023**, 453, 139974.

[18] H. Meng, S. Wang, X. Ma, D. Zhang, L. Zhang, X. Liu, L. Zhang, Small 2023, 19, 2207496.

[19] W. Ma, W. Li, M. Li, Q. Mao, Z. Pan, J. Hu, X. Li, M. Zhu, Y. Zhang, Adv. Funct. Mater. **2021**, 31, 2100195.

[20] K. Xiao, D. Jiang, R. Amal, D.-W. Wang, Adv. Mater. 2018, 30, 1800400.