Supplementary Information:

Investigation of the Electrochemical Performance and Structural Stability of O6-Type Lithium-Rich Layered Oxide as a Positive Electrode Active Material for Improved Lithium Battery Performance

Valentin Saïbi¹ Laurent Castro², Maxim Avdeev^{3,4}, Issei Sugiyama⁵, Stéphanie Belin⁶, Claude Delmas¹, Marie Guignard^{1,*}

¹Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac

² Material Engineering Division, Toyota Motor Europe NV/SA, Technical Center, 1930

Zaventem, Belgium

³Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW

2234, Australia

⁴School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia

⁵Advanced Battery Division, Toyota Motor Corporation, Mishuku 1200, Susono-shi, Shizuoka,

Japan 410-1193

⁶Synchrotron SOLEIL, L'Orme des Merisiers, 91190 Saint-Aubin, France

Figure S1. Analysis of the Na_e site occupancy for the 152 sodium phases of P2-type structures reported in the Inorganic Crystal Structure Database (<u>https://icsd.products.fiz-karlsruhe.de/</u>).

Figure S2. Variable temperature X-ray diffraction patterns recorded during the ion exchange reaction between "P2-Na $_{5/6}$ Li $_{1/6}$ Ni $_{1/6}$ Mn $_{4/6}$ O₂" and LiCl.

Figure S3: Scanning electron microscopy images of particles of: (a), (b) and (c) the "P2-Na_{5/6}Li_{1/6}Ni_{1/6}Mn_{4/6}O₂" phase; (d), (e) and (f) the "O6-LiNi_{1/6}Mn_{4/6}O₂" phase.

Figure S4. (a) and (b) Spectra recorded at the Mn and Ni K-edges, respectively, for the pristine "O6-LiNi_{1/6}Mn_{4/6}O₂" (in black) and for the O6 phase obtained after the deintercalation of 0.3 moles of Li⁺ ions per formula unit (in red in (b)). Spectra for different reference compounds containing Mn³⁺ or Mn⁴⁺ ions and Ni²⁺ and Ni³⁺ ions are also shown. (c) *Operando* X-ray absorption spectroscopy experiment during the deintercalation of 0.3 moles of Li⁺ ions per formula unit.

Figure S5. 45 galvanostatic cycles of charge and discharge of a lithium battery cell using the "O6-LiNi_{1/6} $Mn_{4/6}O_2$ " phase at the positive electrode. (a) Evolution of the discharge specific capacity as a function the cycle number. (b) Evolution of the cell voltage V as a function of the normalized specific capacity of the battery.