Supporting information

Synchronous Dual Additive to Boost Multiphase Interface Stability

of High-voltage Li-rich Mn-based batteries

Qiangfeng Zhang, Shijie Xu, Haipeng Zhu, Zhao Chen, Libao Chen, Chunxiao

Zhang, and Weifeng Wei*

State Key Laboratory of Powder Metallurgy, Central South University, Changsha,

Hunan, 410083, P. R. China.

E-mail: chunxiaozhang@csu.edu.cn (C. Zhang)

Figure S1. Potentiostatic polarization of Li||Al cells with (a) EED and (b) EEDFT.

Figure S2. MD simulation snapshots of EED (a) and EEDFT(b)electrolytes.

Coordination number	EC	EMC	DMC	PF_6
EED	1.04	1.56	2.00	0.79
EEDFT	0.90	1.17	1.83	0.62

Table S1. The values of the coordination number in various electrolytes.

Figure S3. Charge-discharge curves of different cycles using EED electrolyte (a); EEDF electrolyte (b) and EEDFT electrolyte (c).

Figure S4. Voltage decay during the cycle at 1 C

Figure S5. Discharge curves of different current density at 0.1 C-10 C using EED electrolyte (a); EEDF electrolyte (b) and EEDFT electrolyte (c).

Figure S6. Charge-discharge curves at the high current density of 5 C during cycling using EED electrolyte (a); EEDF electrolyte (b) and EEDFT electrolyte (c).

No.	Electrolyte system		Cycles	Capacity retention	Ref.
$\mathbf{1}$	EC/DMC/DEC+FEC	0.5C	100	93.85%	$[1]$
$\overline{2}$	EC/DMC+LiBOB	$0.1\ C$	50	98%	$[2]$
3	$EC/DMC+LiPO2F2$	3 C	500	85%	$[3]$
$\overline{4}$	EC/DMC/EMC+LiDFOB+TMSPi	1 ^C	300	87.7%	[4]
5	EC/DMC/EMC+LiDFOB+THFPB	1 ^C	200	92.19%	$\lceil 5 \rceil$
6	EC/DEC+HTCN+TMSP	1 ^C	200	93.83%	$\lceil 6 \rceil$
7	EC/EMC/DMC+CFBA	0.5C	200	88.4%	$[7]$
8	EC/DMC+TPFPB	1/3C	500	76.8%	[8]
9	This work	1 ^C	500	82.36%	
10	This work	5 C	300	80.4%	

Table S2. Comparison of the electrochemistry performances of the GPE electrolyte with reported results.

Figure S7. Charge-discharge curves from the 100th (a) to the 200th (b) cycle at 30°C.

Figure S8. Diffraction fringes obtained by the corresponding inverse Fourier transform in region Ⅱ.

Figure S9. Sputtering profiles of LRMO cathodes with EED electrolyte(a); EEDFT electrolyte (b); $LiPO₂F(c)$ and $Si(d)$ obtained by Tof-SIMS

Figure S10. 2D view of LRMO cathodes with EED electrolyte obtained by Tof-SIMS

Figure S11. 2D view of LRMO cathodes with EEDFT electrolyte obtained by Tof-SIMS

Figure S12. EIS plots of LRMO||Li cells after 30 cycles using various electrolytes.

Values of R_f and R_{ct}	EED	EEDF	EEDFT
$R_f(\Omega)$	21.6	9.4	7.4
$R_{ct}(\Omega)$	1032	439.3	368.5

Table S3. Rf and Rct of LRMO||Li cells with different electrolytes after cycled.

Figure S13. C 1s XPS spectra of the SEI formed on the lithium metal anode after 100 cycles in the LRMO||Li cells with EED (a) and EEDFT (b).

References:

- 1. Y. Li, F. Lian, L. Ma, C. Liu, L. Yang, X. Sun and K. Chou, *Electrochimica Acta*, 2015, **168**, 261-270.
- 2. P. K. Nayak, J. Grinblat, M. Levi and D. Aurbach, *Journal of The Electrochemical Society*, 2015, **162**, A596.
- 3. B. Jiang, J. Li, B. Luo, Q. Yan, H. Li, L. Liu, L. Chu, Y. Li, Q. Zhang and M. Li, *Journal of Energy Chemistry*, 2021, **60**, 564-571.
- 4. Z. Lu, D. Liu, K. Dai, K. Liu, C. Jing, W. He, W. Wang, C. Zhang and W. Wei, *Energy Storage Materials*, 2023, **57**, 316-325.
- 5. K. Ma, Y. Cao, S. Zhang, Y. Zhang, S. Fang, X. Han, F. Jin and J. Sun, *Nano Letters*, 2024, **24**, 8826-8833.
- 6. J. Zhao, Y. Liang, X. Zhang, Z. Zhang, E. Wang, S. He, B. Wang, Z. Han, J. Lu, K. Amine and H. Yu, *Advanced Functional Materials*, 2021, **31**, 2009192.
- 7. S. Gu, Y. Cui, K. Wen, S. Chen and J. Zhao, *Journal of Alloys and Compounds*, 2020, **829**, 154491.
- 8. J. Zheng, J. Xiao, M. Gu, P. Zuo, C. Wang and J.-G. Zhang, *Journal of Power Sources*, 2014, **250**, 313-318.