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Experimental section

Materials

The indium tin oxide (ITO, 15 Ω sq-1) was provided via Wuhu Jinghui Electronic 

Technology Co., Ltd); Chlorobenzene (CB, 99.9%), N, N-dimethylformamide (DMF, 

99.8%), and isopropanol (IPA, 99.5%) were from Sigma-Aldrich; Dimethyl sulfoxide 

(DMSO, 99.9%) was from Alfa Aesar; Perovskite precursor reagents, Phenyl-C61-

butyric acid methyl ester (PCBM, 99%) and [2-(3,6-Dimethoxy-9H-carbazol-9-

yl)ethyl]phosphonic Acid (MeO-2PACz, 99%) were purchased Xi'an Polymer Light 

Technology Corp., China; Bathocuproine (BCP, >98%), 2,5-diaminobenzene-1,4-

dithiol dihydrochloride (99.9%) and 1,3,5-triformylphloroglucinol (99.9%) were 

obtained from Aladdin Reagent Co., Ltd; All the commercial materials were from 

commercial channels and used without further treatment.

Preparation of thiol-functionalized COFs

Thiol-functionalized COFs (SH-COF) were synthesized by two kinds of precursors 

based on the Schiff-base reactions. 1,3,5-triformylphloroglucinol (TFP) (63 mg, 0.3 

mmol) and 2,5-diaminobenzene-1,4-dithiol dihydrochloride (DBD) (110 mg, 0.45 

mmol) were precisely weighted and added to a 10 mL Schlenk glass reaction tube. 

Then, 1.5 mL of mesitylene, 1.5 mL of dioxane and 0.5 mL of 3 M acetic acid was 

transferred into the container. The mixture was ultrasonicated for 30 min in order to 

uniformly dispersed. After three freeze-thaw degassing treatments in liquid N2 bath, the 

tube was heated at 120 °C for 72 h. After cooling to room temperature, the separated 

precipitate was washed for 5 times with tetrahydrofuran, and dried in vacuum at 180 °C 

for 24 h to obtain the dark red product. Subsequently, SH-COF powder was dispersed 

in IPA solution and stirred overnight to obtain relevant suspension for subsequent 

experiments.

Device fabrication

The pre-patterned indium tin oxide (ITO) substrates were sequentially 

ultrasonically washed with detergent, deionized water, acetone and isopropanol for 15 

min. The processed substrates were further cleaned with O3/ultraviolet treatments for 
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15 min and finally transferred to a N2-filled glovebox before used. For the hole-

transporting layer, MeO-2PACz solution (0.5 mg ml-1 in ethyl alcohol) was spin-coated 

on the ITO substrate at 3000 rpm for 30 s, and then annealed at 100 °C for 10 min. The 

Perovskite precursor solution (FA0.95Cs0.05PbI3) was obtained by mixing FAI, PbI2, and 

CsI in DMF: DMSO mixed solvent (volume ratio: 4 to 1). The perovskite films were 

deposited on the above substrates by a two-step spin-coating process, 2000 rpm for 10 

s and 4000 rpm for 30s, respectively. 150 μL CB as anti-solvent was poured on the 

spinning film at 35 s and then annealed at 100 °C for 30 min. Then, PC61BM 

(20 mg mL−1 in CB) and BCP (0.5 mg mL−1 in IPA) solutions were spin-coated onto the 

substrates at 3000 rpm for 40 s and 6000 rpm for 30 s, respectively. Next, 30 μL of SH-

COF suspension (0, 1, 2, 3 and 5 mg mL-1 in IPA) was deposited on the above films at 

4000 rpm for 30 s. Finally, a 90 nm Ag electrode was obtained by means of thermal 

evaporation under high-vacuum (less than 2.8 × 10−4 Pa).                                                                                                                                                                                                                                                                                                                                                                                                                              

Characterization

The X-ray diffraction (XRD) curves were measured on a Bruker Discovery D8 

diffractometer with Cu-Kα radiation (λ=1.54 Å) at 40 kV. Fourier transform infrared 

(FTIR) spectra were characterized on a Thermo Scientific Nicolet iS50 instrument. X-

ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy 

(UPS) were carried out on the Thermo Scientific Escalab 250Xi instrument equipped 

with Mg-Kα source. The morphological properties of the perovskite films were 

identified via a field emission scanning electron microscopy (SEM, Hitachi S4700). 

The atomic force microscope (AFM) was investigated on the Multimode 8 AFM from 

Bruker. UV-Vis absorption spectra of the perovskite films were obtained on an ocean 

optics spectrum testing system with DH-2000-BAL UV-VIS-NIR light source. Steady-

state photoluminescence (PL) spectra were measured by performing a Laser405-1HS 

illuminant. Time-resolved PL (TRPL) measurements were performed using a FLS920 

from Edinburgh Instruments Ltd./UK. The current density-voltage (J-V) measurements 

and space-charge-limited current (SCLC) performance were executed through a 

Keithley 2400 source meter equipped with a xenon lamp-based solar simulator (AM 

1.5G, irradiance of 100 mW·cm-2). The external quantum efficiency (EQE) was 
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recorded with AC mode on an SRF50 system. The electrochemical impedance spectra 

(EIS) were measured using a Zennium-IM6 electrochemical workstation under dark 

conditions.

Theoretical calculation details

We have used the first-principles Vienna Ab Initio Package (VASP) to complete all 

calculations. The exchange correlation functional is described by the Perdue-Burke-

Ernzerhof (PBE) method in the generalized gradient approximation (GGA) with the 

plane wave cut-off energy of 450 eV. For the optimization process, the electron energy 

is self-consistent when it is converged to the accuracy of 1 × 10-5 eV, and the 

convergence criteria for atomic forces are set at less than 0.03 eV/Å. The Brillouin zone 

is divided by the number of K-point grids centered on the Γ point. While 1×2×1 grid of 

K-points is used for electronic states analysis. The DFT-D3 method of Grimme is 

enabled to describe the dispersion interactions. The differential charge density between 

SH-COF molecules and Ag is defined as ∆ ρ, ∆ρ = ρAB - ρA - ρB, where ρAB represents 

the structure charge density after interface optimization, ρA represented the charge 

density of SH-COF, ρA represented the charge density of Ag. The adsorption energy 

(Eads) of SH-COF molecules on the Ag surface is defined as Eads, Eads = EA+B – EA – EB, 

where EA+B, EA, EB were the total energy of SH-COF molecules are adsorbed on the Ag 

surface, the energy of SH-COF molecules, the energy of the Ag film, respectively.
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Figure S1. The synthesis scheme of SH-COF.
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Figure S2. The XRD pattern of SH-COF.
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Figure S3. XPS pattern of a) N 1s and b) O 1s peaks of SH-COF.
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Figure S4. High-resolution transmission electron microscopy (TEM) image of SH-COF.
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Figure S5. N2 adsorption/desorption isotherms of SH-COF.
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Figure S6. The weight and temperature dependence of SH-COF.
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Figure S7. Top-view SEM images of a) perovskite/PCBM and b) perovskite/PCBM/SH-COF 

films.
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Figure S8. AFM images of a) perovskite/PCBM and b) perovskite/PCBM/SH-COF films.



13

Figure S9. EDS mapping of C, Pb, I, S, O elements of the perovskite/PCBM/SH-COF film.
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Figure S10. UV-vis diffuse reflectance spectrum of SH-COF.
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Figure S11. a) UV-vis spectra of perovskite/PCBM/SH-COF films with different 

concentrations of SH-COF, and b) the Tauc plot of the perovskite film.
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Figure S12. The theoretical model of SH-COF molecule and Ag before optimization: a) front 

view and b) top view.
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Figure S13. The preparation process of perovskite films from the aging devices for AFM 

characterizations, the corresponding device structure is ITO/perovskite/PCBM/BCP/SH-

COF/Ag.
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Figure S14. AFM images of perovskite films from the devices d) without and e) with SH-

COF before thermal aging.
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Figure S15. Schematic diagram of immersing experiments. The Ag/ITO films are immersed 

in FAPbI3 dispersion (15 mg mL−1 in isopropanol) without or with SH-COF (5.0 mg mL−1).
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Figure S16. TA spectra as a function of delay time for perovskite/PCBM and 

perovskite/PCBM/SH-COF films.
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Figure S17. Statistical distribution of the devices with different concentrations of SH-COF of 

a) JSC, b) FF, c) VOC, and d) PCE.
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Figure S18. EQE curves of the control and SH-COF modified devices.



23

Figure S19. Statistics of PCE distribution of the devices with and without SH-COF layer (20 

devices).
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Figure S20. Jsc versus light intensity plots of the control and SH-COF modified devices.
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Figure S21. TPC curves of the control and SH-COF modified devices.
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Figure S22. The long-term operational stability of the unencapsulated devices during 85℃ 

and 85% RH aging.
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Table S1. Summary of fitting parameters of time-resolved PL (TRPL) spectra.

Sample A1 τ1

(ns)

A2 τ2

(ns)

τave

(ns)

Perovskite 4634.5 68.94 5235 5.59 63.59

Perovskite/SH-COF 2116.1 26.73 7982 3.74 18.79

Perovskite/PCBM 2850.7 19.01 6931 3.51 14.21

Perovskite/PCBM/SH-COF 942.1 18.03 7970 2.32 9.84

The average carrier lifetime (τave) is obtained by the following formula: τave = 

(A1τ1+A2τ2)/(A1+A2), where A1 and A2 are the fitting amplitudes.
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Table S2. The average J-V performance of the devices with different concentrations of SH-COF. 

(The values are obtained from 20 devices)

SH-COF 

(mg mL-1)

Jsc

 (mA cm-2)

Voc

(V)

FF

(%)

PCE

(%)

0 24.10±0.11 1.14±0.005 78.25±0.66 21.34±0.43

1 24.15±0.13 1.15±0.005 79.45±0.47 21.98±0.46

2 24.27±0.12 1.16±0.006 81.03±0.55 22.56±0.44

3 24.36±0.12 1.17±0.004 81.89±0.64 23.10±0.36

5 24.17±0.14 1.16±0.004 80.71±0.54 22.52±0.32
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Table S3. Solar cell performance parameters of the champion devices with and without SH-COF.

Sample Jsc

(mA cm-2)

Voc

(V)

FF

(%)

PCE

(%)

Control 24.61 1.134 79.73 22.25

Control 24.79 1.142 80.15 22.69

with SH-COF 24.98 1.172 82.14 24.05

 with SH-COF 25.02 1.173 82.18 24.12
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Table S4. Comparison of PCE and thermal stability of PSCs with different barrier materials.

Device structure Barrier PCE Thermal stability 
test

% of PCE is 
maintained

Year

FTO/PEDOT:PSS/MAPbI3/PC
BM/AZO/SnOx/Ag

AZO/SnOx 12.8% Dark, 60°C in N2, 
1032 h

100% 2017[1]

FTO/NiMgLiO/MAPbI3/PCBM
/CeOx/Ag

CeOx 18.69% MPP condition in 
air, 200 h

91% 2018[2]

FTO/NiMgLiO/FAMACsPbI3/P
CBM/BCP/Bi/Ag

Bi 18.67% Dark, 85°C in N2, 
500 h

85.2% 2019[3]

ITO/NiOx/FA0.85MA0.15Pb(I0.75B
r0.25)3/PCBM-C3N4/BCP/Ag

C3N4 15.6% (36 cm2) Dark, 85°C in N2, 
1000 h

95% 2019[4]

ITO/P3CT/MAPbI3/PCBM/C60/
TPBi/BTA/Cu

BTA 19.56% Dark, 85 °C in N2, 
1100 h

90.7% 2020[5]

ITO/PTAA/CsFAMAPbI3/PCB
M/CIL/Au

CIL 20% MPP condition in 
N2, 250 h

80% 2021[6]

ITO/NiOx/CsFAMAPbI3/PCBM
/BCP:TTTS/Ag

TTTS 22.59% Dark, 85°C in N2, 
1500 h

93% 2022[7]

ITO/PTAA/MAPbI3/PCBM/OX
D-7/Ag

OXD-7 21.83% Dark, 85°C in N2, 
1080 h

80% 2023[8]

ITO/PTAA/FA0.95Cs0.05PbI3/C60

/ALD-SnO2/amp-ZrNx/Cu
amp-ZrNx 23.1% Dark, 85°C in N2, 

1100 h
90% 2023[9]

FTO/MeO-
2PACz/RbCsMAFAPb(I0.95Br0.0

5)3/PCBM/YbOx/Cu

YbOx 25.2% Dark, 85°C in N2, 
500 h

98% 2024[10]

 ITO/MeO-
2PACz/FA0.95Cs0.05PbI3/PCBM/

BCP/SH-COF/Ag

SH-COF 24.12% Dark, 85°C in N2, 
1200 h

93.3% This work
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Table S5. Solar cell performance parameters of the champion devices with and without SH-COF 

for the area of 1.0 cm2.

Sample Jsc

 (mA cm-2)

Voc

(V)

FF

(%)

PCE

(%)

Control 23.83 1.11 75.95 20.09

 with SH-COF 24.12 1.15 77.98 21.63
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Table S6. EIS fitting parameters of the control and SH-COF modified devices.

Sample RS (Ohm) Rrec (Ohm) Crec (F) 

Control 147.6 12368 3.45×10-8

 with SH-COF 137.1 25958 2.43×10-8
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