Electron redistribution induced by p-d orbital hybridization in

Co₂P/FeP nanosheets boosts water electrooxidation[†]

Qiyan Sun^a, Yu Miao^a, Ruixue Zhang^a, Guang-Rui Xu^{a,*}, Chuanfang Zhang^c, Kang

Liu^b, Zexing Wu^b, and Lei Wang^{a,b,*}

^a Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China

^b College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China

^c Shandong Weima Equipment Science & Technology Co., Ltd., Dongying, 257000, China

E-mail: xugrui@gmail.com (G.-R. Xu); inorchemwl@126.com (L. Wang)

Computational Details

All DFT calculations were performed using the Vienna ab initio simulation package (VASP5.4.4).¹ The exchange-correlation is simulated with PBE functional and the ionelectron interactions were described by the PAW method.^{2,3} The vdWs interaction was included by using empirical DFT-D3 method.⁴ The Monkhorst-Pack-grid-mesh-based Brillouin zone k-points are set as $2 \times 2 \times 1$ for all periodic structure with the cutoff energy of 400 eV. The convergence criteria are set as $0.02 \text{ eV } \text{A}^{-1}$ and 10^{-5} eV in force and energy, respectively.

The free energy calculation of species adsorption (ΔG) is based on Nørskov *et al*'s hydrogen electrode model.⁵

$$\Delta G = \Delta E + \Delta E_{\rm ZPE} - T\Delta S + eG_{\rm U} \tag{1}$$

Herein ΔE , ΔE_{ZPE} , and ΔS respectively represent the changes of electronic energy, zero-point energy, and entropy that caused by adsorption of intermediate, while the eG_U is free energy change contributed by the applied potential, 1.23 V in typical OER. The entropy of H⁺+e⁻ pair is approximately regarded as half of H₂ entropy in standard condition.⁶

Fig. S2 SEM image of Co₂P nanosheets.

Fig. S3 XRD patterns of the Co_3O_4/Fe_3O_4 nanosheets.

Fig. S4 XRD patterns of the FeP and Co_2P nanosheets.

Fig. S5 Co₂P/FeP nanosheets of AFM image.

Fig. S6 Co₂P/FeP nanosheets of experimental SAED pattern.

Fig. S7 TGA curves of Co_2P/FeP nanosheets and their derived Co_3O_4/Fe_3O_4 nanosheets.

Fig. S8 (a) Nitrogen adsorption-desorption isotherm, and (b) pore size distribution for Co_2P/FeP nanosheets.

Fig. S9 (a) nitrogen adsorption-desorption isotherm, and (b) pore size distribution for Co_3O_4/Fe_3O_4 nanosheets.

Fig. S10 C 1s XPS spectrum of Co₂P/FeP nanosheets.

Fig. S11 LSV curves of a series of Co_2P /FeP nanosheets with different Co/Fe ratios measured in 1 M KOH.

Fig. S12 CV curves at different scan rates (20-100 mV s⁻¹ with the interval of 20 mV s⁻¹) of (a) Co_2P/FeP nanosheets. (b) FeP nanosheets. (c) Co_2P nanosheets. (d) Co_3O_4/Fe_3O_4 nanosheets and (e) commercial RuO₂ catalysts during OER process under 1 M KOH solution.

Fig. S13 ECSA of (a) Co_2P/FeP nanosheets, (b) FeP nanosheets, (c) Co_2P nanosheets, (d) Co_3O_4/Fe_3O_4 nanosheets, and (e) commercial RuO₂ catalysts during OER process under 1 M KOH solution.

Fig. S14 The long-term durability test of Co_2P/FeP nanosheets and commercial RuO_2 at 10 mA cm⁻² in 1 M KOH solution.

Fig. S15 Chronoamperometric curve for Co_2P/FeP nanosheets and Co_2P/FeP without carbon layer.

Fig. S16 XRD patterns of the Co₂P/FeP nanosheets after the long-term durability test.

Fig. S17 The full XPS spectrum of Co_2P/FeP nanosheets after the long-term durability test.

Fig. S18 XPS spectra of (a) Fe 2p, (b) Co 2p, and (c, d) P 2p for Co_2P/FeP nanosheets after the long-term durability test.

Fig. S19 Structure model of Co₂P nanosheets.

Fig. S20 Structure model of FeP nanosheets.

Fig. S21 Structure model of Co₂P/FeP nanosheets.

Fig. S22 Calculated DOS profiles of FeP nanosheets.

Fig. S23 Calculated DOS profiles of Co₂P nanosheets.

Entry	Samples	n (Co source) (g)	n (Fe source) (g)	η ₁₀ for OER (mV)	η ₁₀₀ for OER (mV)
1	Co-Fe-0.5	0.415	0.636	267	313
2	Co-Fe-1	0.623	0.477	303	364
3	Co-Fe-1.5	0.747	0.382	251	322
4	Co-Fe-1.75	0.913	0.255	294	364
5	Co-Fe-2	0.830	0.318	257	304
6	Co-Fe-2.25	0.862	0.294	276	344
7	Co-Fe-2.5	0.890	0.273	284	365
8	Co-Fe-3	0.934	0.239	274	372
9	Co-Fe-4	0.996	0.191	333	401
10	СР	/	/	480	/

Table S1 A series of Co_2P /FeP nanosheets with varying Co/Fe synthetic parameter ratios and their corresponding properties.

 Table S2 The OER performances of nonnoble-based electrocatalysts that reported recently.

	Overpotenti al (mV)	Tafel (mV dec ⁻¹)	Current density (mA cm ⁻²)	Res.
Co ₂ P/FeP	257	39.6	10	This work
FeP	416	73.2	10	This work
Co ₂ P	400	68.2	10	This work
CoFe ₂ O ₄	309	67.4	10	8
Co ₃ O ₄	278	41	10	9
$Co_{3-x}Pd_xO_4$	370	60	10	10
FeP ₄ /CoP/C	258	41	10	11
Fe-Ni-Pi-5-SHP	263	44	10	12
Co ₃ Cu-Ni ₂ MNs	288	87	10	13
$Ni_3N@2M-MoS_2$	327	38.9	10	14
MoS_2/NiS_2	381	92	10	15
FeP	470	137	10	16
CoP	340	114	10	16
Fe ₂ P/NiCoP	272	92.1	10	17
Fe ₂ P@FeN ₃ P ₁ -NC	320	46.4	10	18
FeP/CoP	266	60.86	10	19
Fe ₂ O ₃ /FeP	264	47	10	20
FeP@Au	320	56.8	10	21
CoP	345	47	10	21
Ni–P	344	49	10	21
CoNiFeP@C NPs	260	65.5	10	22
NiFeP/CoP	274	70	10	23

	Co ₂ P	FeP	Co ₂ P/FeP
d-band-center-up	-1.67	-2.072	-1.532
d-band-center-down	-0.924	-0.484	-0.958
d-band-center	-1.297	-1.278	-1.245

Table S3 D-band center of Co_2P , FeP, and Co_2P /FeP

References

- 1 G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169–11186.
- 2 J. P. Perdew, K. Burke and M. Ernzerhof, Phys Rev Lett., 1996, 77, 3865.
- 3 B. Hammer, L. B. Hansen and J. K. Nørskov, Phys. Rev. B, 1999, 59, 7413-7421.
- 4 S. Grimme, J. Comput. Chem., 2006, 27, 1787–1799.
- 5 E. Skúlason, V. Tripkovic, M. E. Björketun, S. Gudmundsdóttir, G. Karlberg, J. Rossmeisl, T. Bligaard, H. Jónsson and J. K. Nørskov, *J. Phys. Chem. C*, 2010, **114**, 18182–18197.
- 6 G. Gao, A. P. O'Mullane and A. Du, ACS Catal., 2017, 7, 494–500.
- 7 S. L. Zhang, B. Y. Guan, X. F. Lu, S. Xi, Y. Du and X. W. (David) Lou, *Adv. Mater.*, 2020, **32**, 2002235.
- 8 Y. Wang, J. Jia, X. Zhao, W. Hu, H. Li, X. Bai, J. Huang, J. Zhang, J. Li, X. Tang, Y. Peng, J. Huang and C. Xu, ACS Catal., 2024, 14, 2313–2323.
- 9 N. Wang, P. Ou, R. K. Miao, Y. Chang, Z. Wang, S.-F. Hung, J. Abed, A. Ozden, H.-Y. Chen, H.-L. Wu, J. E. Huang, D. Zhou, W. Ni, L. Fan, Y. Yan, T. Peng, D. Sinton, Y. Liu, H. Liang and E. H. Sargent, *J. Am. Chem. Soc.*, 2023, **145**, 7829– 7836.
- 10N. Wang, P. Ou, S. Hung, J. E. Huang, A. Ozden, J. Abed, I. Grigioni, C. Chen, R. K. Miao, Y. Yan, J. Zhang, Z. Wang, R. Dorakhan, A. Badreldin, A. Abdel-Wahab, D. Sinton, Y. Liu, H. Liang and E. H. Sargent, *Adv. Mater.*, 2023, 35, 2210057.
- 11 P. Zhao, C. Peng, Y. Luo, L. Cheng, Z. Li and Z. Jiao, *Chem. Eng. J.*, 2024, **483**, 149121.
- 12C. Xuan, T. Shen and B. Hou, Chem. Eng. J., 2024, 479, 147723.
- 13P. Dong, Y. Gu, G. Wen, R. Luo, S. Bao, J. Ma and J. Lei, *Small*, 2023, **19**, 2301473.
- 14T. Wu, E. Song, S. Zhang, M. Luo, C. Zhao, W. Zhao, J. Liu and F. Huang, *Adv. Mater.*, 2022, **34**, 2108505.
- 15Z. Yin, X. Liu, S. Chen, H. Xie, L. Gao, A. Liu, T. Ma and Y. Li, *Mater. Today* Nano, 2022, **17**, 100156.
- 16S. Hou, A. Zhang, Q. Zhou, Y. Wen, S. Zhang, L. Su, X. Huang, T. Wang, K. Rui, C. Wang, H. Liu, Z. Lu and P. He, *Nano Res.*, 2023, 16, 6601–6607.
- 17L. Jin, H. Xu, K. Wang, L. Yang, Y. Liu, X. Qian, G. He and H. Chen, *Appl. Surf. Sci.*, 2024, **657**, 159777.
- 18E. Zhu, C. Shi, J. Yu, H. Jin, L. Zhou, X. Yang and M. Xu, *Appl. Catal. B Environ. Energy*, 2024, 347, 123796.
- 19X. Lei, J. Qing, L. Weng, S. Li, R. Peng, W. Wang and J. Wang, New J. Chem., 2022, 46, 15351–15357.
- 20I. Ahmad, J. Ahmed, S. Batool, M. N. Zafar, A. Hanif, Zahidullah, M. F. Nazar, A. Ul-Hamid, U. Jabeen, A. Dahshan, M. Idrees and S. A. Shehzadi, *J. Alloys Compd.*, 2022, 894, 162409.
- 21 J. Masud, S. Umapathi, N. Ashokaan and M. Nath, J. Mater. Chem. A, 2016, 4, 9750–9754.
- 22C. Zhang, Z. Xing, Y. Peng, H. Zhou, L. Zhang and Z.-H. Lu, Fuel, 2024, 365,

131181.

23 G.-L. Li, Y.-Y. Miao, F. Deng, S. Wang, R.-X. Wang, W.-H. Lu and R.-L. Chen, J. Colloid Interface Sci., 2024, 667, 543–552.