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3 Fig. S1 SEM images of nanoporous carbon with different scale bars.
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13 Fig. S2 XRD pattern of nanoporous carbon support.
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3 Fig. S3 XRD patterns of Ni-NC-L and Ni-NC catalysts.
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15 Fig. S4 XRD pattern of Ni NPs/C.
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2 Fig. S5 a, N2 adsorption-desorption isotherm, and b, corresponding pore size 
3 distribution curve of Ni-NC.
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3 Fig. S6 TEM image of Ni-NC-L.
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9 Fig. S7 EDS mapping images of Ni-NC-L.



1

2 Fig. S8 Raman spectra of Ni-NC, Ni-NC-L and PC.
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6 Fig. S9 HAADF-STEM images of Ni-NC.
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11 Fig. S10 HAADF-STEM images of Ni-NC-L.
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2 Fig. S11 XRD pattern of Ni3N/C.
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8 Fig. S12 SEM image of Ni3N/C.
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2 Fig. S13 EDS mapping images of Ni3N/C.
3
4
5

6

7 Fig. 14 SEM, and EDS mapping images of NiO/C.
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2 Fig. S15 XRD pattern of NiO/C.
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6 Fig. S16 N2 adsorption-desorption isotherms of Ni-NC-L (a), Ni3N/C (b) and NiO/C (c), 
7 and corresponding pore size distribution curves of Ni-NC-L (d), Ni3N/C (e) and NiO/C 
8 (f).
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3 Fig. S17 XPS Ni 2p spectra of (a) Ni-NC-L and (b) Ni-NC catalysts.
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12 Fig. S18 Ni 2p XPS spectrum of Ni3N/C. The appearance of Niσ+ is the result of the 
13 oxidation of the catalyst when exposed to air.
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3 Fig. S19 Absorbance spectra of dye solutions at various concentrations, (a) MO, (c) 
4 MB, and (e) RhB. Linear correlation of the absorbance intensity to (b) MO 
5 concentration, (d) MB concentration, and (f) RhB concentration.



1

2
3 Fig. S20 (a) The dye concentration after adsorption saturation and the absorbance 
4 spectra of dye solutions, MO (b), MB (c), and RhB (d).
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9 Fig. S21 The absorbance spectra correspond to the MB solution concentration under 

10 the Fenton-like performance of Ni3N/C, NiO/C, and Ni-NC.
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2 Fig. S22 The absorbance spectra correspond to the MB solution concentration under 
3 the Fenton-like performance of Ni-NC-L.
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8 Fig. S23 The absorbance spectra correspond to the MO solution concentration under 
9 the Fenton-like performance of Ni3N/C, NiO/C, and Ni-NC.
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2 Fig. S24 The absorbance spectra correspond to the MO solution concentration under 
3 the Fenton-like performance of Ni-NC-L.
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9 Fig. S25 The absorbance spectra correspond to the RhB solution concentration under 

10 the Fenton-like performance of Ni3N/C, NiO/C, and Ni-NC.
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2 Fig. S26 The absorbance spectra correspond to the RhB solution concentration under 
3 the Fenton-like performance of Ni-NC-L.
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2 Fig. S27 Fenton-like performance of NC for various dye solutions, MB (a), MO (c), and 
3 RhB (e), and the corresponding absorbance spectra correspond to the dye solution 
4 concentration
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2 Fig. S28 The •OH generation of Ni-NC by using TA as a probe during different time.
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7 Fig. S29 Comparison of •OH generation of Ni-NC under MB degradation condition 
8 and after quenching.
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2 Fig. S30 Probable degradation pathway of MB.
3 Note: This degradation pathway is based on the analysis of the major peaks in the 
4 LC-MS chromatograms. Other non-detected reaction intermediates might also exist. 
5 The reaction intermediate for a certain m/z value shown here is just a selection 
6 among numerous possible molecules, especially for the intermediates of small m/z 
7 values.
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2 Fig. S31 XPS spectra of catalysts at various process. Ni 2p spectra of the catalysts 
3 when H2O2 was activated, (a) Ni-NC and (d) Ni3N/C. Ni 2p spectra of the catalyst 
4 catalysts when adequent MB was degradation, (b) Ni-NC and (e) Ni3N/C, and the 
5 corresponding N 1s spectra of (c) Ni-NC and (f) Ni3N/C.
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2 Fig. S32 The cyclic test of MB degradation reactions of Ni-NC.
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9 Fig. S33 The absorbance spectra correspond to the MB solution concentration under 

10 the Fenton-like performance of Ni-NC during 5 cycles.
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2 Fig. S34 The mass of Ni-NC and Ni2+ leaching concentration of Ni-NC during 5 cycles.



1 Table S1. The Ni content of all catalysts.

Catalysts Ni content (wt.%)

Ni-NC-L 5.1

Ni-NC 9.3

Ni NPs/C 12.3

Ni3N/C 10.2

NiO/C 15.6



1 Table S2. Parameters of EXAFS fittings for Ni-NC, Ni3N/C, and reference samples (Ni 
2 foil and NiPc).

Sample Shell Na R (Å)b σ2*10-3 (Å2)c ΔE0 (eV)d R factor

Ni-NC Ni-N 4.0±0.7 1.41 7.5±0.6 5.9 0.0013

Ni-N 1.7±0.7 1.42 6.4±0.5
Ni3N/C

Ni-Ni 10.3±0.7 2.29 9.5±0.8
4.6 0.0018

Ni foil Ni-Ni 12 2.21 7.9±0.9 5.1 0.0019

NiPc Ni-N 4.1±0.8 1.48 9.6±0.8 3.9 0.0012

3 aN: coordination numbers; bR: bond distance; cσ2: Debye-Waller factors; dΔE0: the 
4 inner potential correction; S0

2=0.78.



1 Table S3. The comparison of catalytic performances for the recently reported 
2 Fenton-like catalysts.

Catalysts Contaminant

mcatalyst

(mg)

CMB

(ppm)

CH2O2

(ppm)

k

(min-1)

Ref.

Ni-NC MB 10 20 10 0.767 This work

Ni-NC MO 10 20 10 0.641 This work

Ni-NC RhB 10 20 10 0.592 This work

Fe@N-C-800 MB 10 50 34 1.2 [1]

Fe@N-C-800 RhB 10 50 34 0.38 [1]

Cu/NC-MMT RhB 20 20 800 0.595 [2]

Cu-C3N4 RhB 10 10 1000 1.64 [3]

MSO-12 MB 10 50 27 0.995 [4]

SA-Rh/NC RhB 10 60 / 0.103 [5]

Fe-MG MB / 20 13.6 0.231 [6]

Co/Cu/zeolite RhB / 10 1020 0.053 [7]

Fe-BDC1 RhB / 20 1440 0.09 [8]

Fe SA/NPCs RhB / 25 / 19.657 [9]
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