Supporting Information

Carbonate deprotonation on Ni-rich layered cathode: Development of a new cis isomerism oligomer as an organic coverage

Laurien Merinda,^a Fu-Ming Wang, ^{*a,b,c,d} Nae-Lih Wu,^{*e} Rio Akbar Yuwono,^a Chusnul Khotimah,^a Ulya Qonita,^a Wei-Hsiang Huang,^f Lester Pei-Wan Tiong,^a Ching-Kai Chang,^a Ping-Hsuan Hsu,^a Chih-Wen Pao,^f Jeng-Lung Chen,^f Chi-Liang Chen,^f and Ting-Shang Chan.^f

- ^a Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
- ^b Graduate Institute of Energy and Sustainability Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
- ^c Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 320314, Taiwan.
- ^d R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan.
- ^e Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
- ^f National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan.

*Corresponding author:

Prof. Fu-Ming Wang

IB-606, No.43, Section 4, Keelung Road, Taipei 106, Taiwan, R.O.C

E-mail: mccabe@mail.ntust.edu.tw

Tel: +886-2-27303755

Fax: +886-2-27376922

Prof. Nae-Lih Wu

Department of Chemical Engineering 208A, No.1, Section 4, Roosevelt Road, Taipei 106, Taiwan, R.O.C

E-mail: <u>nlw001@ntu.edu.tw</u>

Tel: +886-2-23627158

Fax: +886-2-23623040

Fig. S1 SEM images of (a, b) pristine NCM811 and (c, d) CI@NCM811 particles before cycle.

Fig. S2 Ex situ ATR-FTIR of pristine NCM811 and CI@NCM811 before cycle.

Fig. S3 The operando ATR-FTIR electrochemical cell illustration.

Fig. S4 Proposed structure cis formulations of oligomer.

	Maleimide dissolved in NMP	CI Oligomer
Mn	511	907
Мw	554	2290
PDI	$\frac{\bar{M}w}{\bar{M}n} = 1.08$	$\frac{Mw}{Mn} = 2.52$
D _p	$\frac{\bar{M}n}{MW} = \frac{511}{268.22} = 1.9$	$\frac{\bar{M}n}{MW} = \frac{907}{268.22} = 3.38$

Table S1. GPC characteristics of maleimide monomer in NMP and its derivative CI oligomer.

Fig. S5 FTIR spectra of NMP, maleimide monomer, and CI oligomer at wavenumber range of (a) 600-1800 cm⁻¹ and (b) 1800-4000 cm⁻¹. The corresponding functional group for each absorption peak in certain wavenumber is mentioned in table S2.

Wavenumber (cm ⁻¹)	Vibrational mode	Species of origin
694	C-H bending	Maleimide Monomer
844	C-H (1,4 – Disubstitution)/ Para	Maleimide Monomer
892	C-H (1,4 – Disubstitution)/ Para	CI Oligomer
1066	C-O stretching	CI Oligomer
1241	C-N stretch	CI Oligomer
1365	C-N strecth	Maleimide Monomer
1380	C-N strecth	Maleimide Monomer
1407	O-H bending	CI Oligomer
1517	Aromatic ring (C=C-C)	Maleimide Monomer
1670	C=C stretching	CI Oligomer
1697	C=C stretching	Maleimide Monomer
1720	C=O stretching	Maleimide Monomer, Cl Oligomer
3100	C=CH / C-H stretch	Maleimide Monomer
3675	-сон / -он	CI Oligomer

Table S2. FTIR peak table of Maleimide monomer and CI oligomer (Ref. 35)

Fig. S6 XANES spectra of Ni K-edge during first charge of (a) pristine NCM811 and (b) the magnification of the orange-square-lined region as well as (c) CI@NCM811 and (d) the magnification of the orange-square-lined region. (e) Corresponding binding energy at specify normalized intensity of 0.6 of the edge jump.

Fig. S7 Ni K-edge EXAFS spectra of pristine NCM811 and CI@NCM811 in the first charge.

Fig. S8 Initial voltage profile of NCM811 vs. CI@NCM811 in the half-cell configuration

Fig. S9 SEM images of (a, b) pristine NCM811 and (c, d) CI@NCM811 electrode after cycling in half cell configuration.

Fig. S10 The Nyquist plot of pristine NCM811 and Cl@NCM811 after 34th cycle at charge state 3.9 V (a). The linear slope of Z_w and $\omega^{-1/2}$ at low frequency for pristine NCM811 (b) and Cl@NCM811 (c) after 34th cycle at charge state 3.9 V.

The semi-circles of the two electrodes in high-frequency region representing the electrolyte resistance, cathode-electrolyte interface resistance and charge transfer resistance. Low freq tail was attributed to the Warburg impedance (Z_w) of Li⁺ diffusion in the cathode material.¹

The diffusion coefficient value can be obtained by the following equation (1): ^{2–4}

$$D_{Li^{+}} = 0.5 \left(\frac{RT}{A F^2 \sigma_{\omega} C}\right)^2 \tag{1}$$

Where R represents the gas constant, T is the Kelvin temperature, A is the total surface of the electrode, F is Faraday's constant, σ_{ω} is the linear slope between Warburg impedance (Z_w) and frequency region ($\omega^{-1/2}$) and C is the molar concentration of lithium in the active material.

The Li⁺ diffusion coefficient calculated by eq 1 of pristine NCM811 and Cl@NCM811 after prolonged cycle condition are 3.82×10^{-8} cm⁻² s⁻¹ and 4.48×10^{-8} cm⁻² s⁻¹, respectively. This value were similar to previous report that stated the D_{Li+} in the charge process are between 10^{-8} to 10^{-9} cm⁻² s⁻¹.^{5,6}

Fig. S11 Equivalent circuit model for the fitting of Nyquist plot at (a) after 3rd cycle and (b) after 250th cycle.

References :

- 1 X. Zhang, B. Peng, L. Zhao, G. Wan, F. Wang, S. Zeng, H. Zhang, J. Ding and G. Zhang, ACS Appl. Mater. Interfaces, 2022, 14, 16204–16213.
- 2 K. Tang, X. Yu, J. Sun, H. Li and X. Huang, *Electrochimica Acta*, 2011, **56**, 4869–4875.
- 3 Y. Cui, X. Zhao and R. Guo, *Electrochimica Acta*, 2010, **55**, 922–926.
- 4 C. Hong, Q. Leng, J. Zhu, S. Zheng, H. He, Y. Li, R. Liu, J. Wan and Y. Yang, *J. Mater. Chem. A*, 2020, **8**, 8540–8547.
- 5 K. Märker, P. J. Reeves, C. Xu, K. J. Griffith and C. P. Grey, *Chem. Mater.*, 2019, **31**, 2545–2554.
- 6 H.-J. Noh, S. Youn, C. S. Yoon and Y.-K. Sun, J. Power Sources, 2013, 233, 121–130.