Support Information

Interface and Interlayer Electron/Exciton-Phonon Coupling of TMDs/InSe for Efficient Charge Transfer and Ultrafast Dynamics: Implications for Field-Effect Devices

Shan-Shan Kan¹, Shi-Xuan Deng¹, Xiao-Meng Jiang¹, Yu-Xin Liu¹, Ming-Kun Jiang¹, Zhe-Kun Ren¹, Cheng-Bao Yao^{1,*}

¹Key Laboratory of Photonic and Electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China

*Corresponding author: yaochengbao5@163.com

Fig. S1 EDS images of InSe (a), MoS₂ (b), MoSe₂ (c), WS₂ (d) and WSe₂ (e), and EDS images of MoS₂/InSe (b_i), MoSe₂/InSe (c), WS₂/InSe (d_i) and WSe₂/InSe (e_i).

Phase	Peak (deg)	Planes	D (nm)	JCPDS
MoS ₂	28.5	(004)	3.1325	75-1539
	39.5	(103)	2.2789	
	58.9	(008)	1.5662	
MoSe ₂	13.7	(002)	6.4600	29-914
	31.5	(100)	2.8450	
	58.0	(112)	1.5910	
	69.5	(203)	1.3510	
WS ₂	29.0	(004)	3.0890	8-237
	58.5	(008)	1.5458	
	75.9	(116)	1.2524	
WSe ₂	13.6	(002)	6.5100	6-80
	27.4	(004)	3.2500	
	31.3	(100)	2.8500	
	59.7	(107)	1.5500	
	76.0	(205)	1.2500	
γ-InSe	10.6	(003)	8.3167	70-2541
	31.4	(015)	2.8456	
	59.3	(027)	1.5579	
ε-InSe	25.7	(100)	3.4650	34-1431
	32.2	(006)	2.7730	

Tab. S1 Detailed summary of XRD data for samples.

Fig.S2 XRD pattern and standard cards of InSe (a), MoS₂ (b), MoSe₂ (c), WS₂ (d), and WSe₂ (e) (Among them, 34-1431 corresponds to hexagonal InSe, and 70-2541 corresponds to rhombohedral

InSe.).

Fig.S3 XRD pattern of $MoS_2/InSe$ and MoS_2 (a), $MoSe_2/InSe$ and $MoSe_2$ (b), $WS_2/InSe$ and WS_2 (c),

and $WSe_2/InSe$ and WSe_2 (d)

Fig. S4 Raman spectra of MoS₂/InSe and MoS₂ (a), MoSe₂/InSe and MoSe₂ (b), WS₂/InSe and WS₂

(c), and $WSe_2/InSe$ and WSe_2 (e)

Fig. S5 Low-resolution XPS spectra of InSe (a), MoS₂ (b), MoSe₂ (c), WS₂ (d) and WSe₂ (e). Lowresolution XPS spectra of MoS₂/InSe (b_i), MoSe₂/InSe (c), WS₂/InSe (d_i) and WSe₂/InSe (e_i).

Fig. S6 PL spectra of TMDs and TMDs/InSe (a-d) InSe (e). (f_i) Exciton emission mechanism of InSe

and TMDs. (f_{ii}) PL mechanism of TMDs/InSe heterojunctions.

Fig. S8 VB spectra of InSe and TMDs.

Tab. S2. Time constants of A-exciton decay (monitored around 500 nm) of InSe and TMDs/InSe

heterojunctions following 380 nm laser excitation.

	τ ₁ (ps)	τ ₂ (ps)	τ ₃ (ps)
InSe	0.09	16.82	753.69
MoS ₂ /InSe	0.14	234.69	841.09
MoSe ₂ /InSe	0.12	19.82	778.66
WS ₂ /InSe	0.24	36.92	1256.70
WSe ₂ /InSe	0.69	235.59	1015.69

Fig. S9 TMDs/InSe heterojunctions atomic structure building model.

Fig. S10 PDOS of InSe (a), MoS_2 (b), $MoSe_2$ (c), WS_2 (d), and WSe_2 (e)

Fig. S11 Modeling of the calculated electron mobility of InSe and MoS₂/InSe heterojunction.

Fig. S12. Transmission, reflection, and absorption spectrum of InSe (a), MoS₂/InSe (b), and WS₂/InSe

(c) heterojunctions films, respectively.

Fig. S13 Theoretical model of Au-InSe and MS₂/InSe heterojunctions electrodes.

Fig. S14 Conductivity of InSe and MS₂/InSe heterojunctions transport devices.

Tab. S1 calculates the carrier effective mass m* (m₀), deformation potential E_1 (eV), planar stiffness C_{2D} (N/m), and electron mobility μ (cm²·V⁻¹·s⁻¹) of single-layer InSe and MoS₂/InSe heterostructures along the x and y directions at room temperature.

material	m _x * (m ₀)	m _y * (m ₀)	E _{1x} (eV)	E _{1y} (eV)	C _{2Dx} (N/m)	C _{2D-y} (N/m)	μ _x (cm ² V ⁻¹ S ⁻¹)	μ _y (cm ² V ⁻¹ S ⁻¹)
InSe	0.24	0.24	-6.67	-7.14	54.69	108.01	476	820
MoS ₂ /InSe	0.25	0.25	-2.33	-2.33	152.13	39.24	9730	2510

Tab. S4 For reference, we list some previous calculations of the electron mobility of TMDs at room

material	μ _x (cm ² V ⁻¹ s ⁻	μ _y (cm²V ⁻¹ s ⁻	µ _{exp} (cm²V⁻¹s⁻ ¹)	Ref.
MoS ₂	271-285			12
MoSe ₂ /MoS ₂	400-423			12
MoS ₂			0.226	13
ReSe ₂			0.226	13
MoS ₂ /ReSe ₂			4	13
SnS ₂			0.6	52
MoS ₂			1.1	52
SnS ₂ /MoS ₂			27.26	52
InSe	1995	1803		53
BP	1030	87		53
InSe/BP	2838	3670		53
InSe	1619.51	1779.16		61
Zr ₂ CO ₂	57.55	612.12		61
InSe/Zr ₂ CO ₂	10942.98	9293.66		61
InSe			10 ³	62

temperature, ^{12, 53, 61} and experimental values. ^{13, 52, 62}

Tab. S5 Carrier concentration, Hall mobility, and resistivity of InSe and MoS₂/InSe heterojunction.

	Carrier Concentration	Hall mobility	Resistivity (ρ)
InSe	1.727×10 ¹⁴ cm ⁻³	1.59×10 ³ cm ² V ⁻¹ S ⁻¹	22.67 Ωcm
MoS₂/InSe	4.743×10 ¹⁵ cm⁻₃	1.85×10 ³ cm ² V ⁻¹ S ⁻¹	0.711 Ωcm