1

Supporting Information

Sustainable Castor Oil-derived Cross-linked Poly(ester-urethane) Elastomeric Films for Stretchable Transparent Conductive Electrodes and Heaters

Timo Laukkanen^{a†}, Pulikanti Guruprasad Reddy^{a*†}, Amit Barua^a, Manish Kumar^a, Kristofer Kolpakov^a, Teija Tirri^b, and Vipul Sharma^{a*}

^aDepartment of Mechanical and Materials Engineering, University of Turku, Turku–20500, Finland.

^bFaculty of Science and Engineering, Åbo Akademi University, Turku–20500, Finland.

*Corresponding author e-mail address: guru.pulikanti@utu.fi, vipul.sharma@utu.fi

1 Both authors contributed equally

Fig. S1 Transmittance profile of PCVU elastomer that prepared using prepolymer and HMDI in 1:3 molar ratios.

Fig. S2 Elastic moduli calculation using two linear fits at E1 and E2 regions in the stress-strain curve of PCVU elastomer.

Table S1. Weight change of PCVU substrate exposed in different organic solvents over time.											
Test time	Weight of PCVU after exposing in different organic solvents (mg)										
(h)	Methanol	Ethanol	Isopropanol	Dichloromethane	Dimethylformamide						
0h (no solvent	135,3	93,0	72,4	47,4	107,1						
exposure)											
1h	135,4	96,9	74,3	47,7	108,9						
2h	134,3	96,9	72,2	47,0	108,2						
5h	133,6	93 <i>,</i> 9	71,3	47,1	107,2						
19h	132,6	92,2	71,2	47,1	106,2						
24h	133,0	94,01	71,1	46,5	107,1						

Fig. S3 Camera images PCVU substrates underwent exposure in different organic solvents (methanol, ethanol, isopropanol, dichloromethane and dimethylformamide) over time (1h, 2h, 5h, 19h, and 24h).

Fig. S4 Possible mechanism for the hydrolytic cleavage of ester bonds in PCVU catalyzed by OH^- in the pH = 14 aqueous solutions.

Fig. S5 Camera images of AgNWs in ethanol-water droplets on PVA-coated and uncoated PCVU substrates: (a) No spreading of droplets on the uncoated PCVU substrate at time intervals of 0s, 5s, 10s, 15s, and 30s. (b) Spreading of droplets on the PVA-coated PCVU substrate at the same intervals. (c) Mechanism of spreading for ethanol-water droplets on the PVA-coated PCVU substrate.

Fig. S6 IR thermal images showing reversible heating characteristics with the applied strain at 4V: (a) Heater at voltage-off state; heating performance of the heater at voltage-on (4V) state at (b) 0% strain, (c) 5% strain, (d) 10% strain, (e) 15% strain, (f) 20% strain, (g) 25% strain, (h) 30% strain, (i) 35% strain.

Table S2. Comparison of high-performance flexible heaters reported in the literature with PCVU heater reporting in									
this work.					-				
Type of heater	Response	cooling	maximum	Voltage	Degradability	Iransparency	Reference		
	time (s)	time (s)	(°C)	(V)		(70)			
PCVU-based	15 s	15s	160 °C	5.5V	yes	~75%	Present		
heater							work		
AgNWs/Leaf	5-10s	15s	125 °C	6V	yes	80-86%	1		
heater									
ANF/AgNW	10-30 s	-	~200 °C	5V	-	40%	2		
paper-based									
heater									
all-polymeric	250-385 s	400s	45-114°C	10V	no	87-90%	3		
transparent thin									
film heaters									
AgBMs/ePI	8s	15s	~204 °C	8V	no	70%	4		
conducting film									
heater									
AgNW@rGO	50s	80s		7V	no	90%	5		
based flexible			366oC						
transparent									
heater									
Ag NMs/ePLLA	6 s	-	111.8 °C	3V	yes	50%	6		
heater									
cupronickel-	60s	100s	225 °C	9V	no	85.6%	7		
based									
micromesh film									
heater									
PPFC/Ag bilayer	300s	150s	136.7 °C	6.8V	no	80%	8		
thin film heater									
Hanji cellulose	150s	-	175 °C	10V	yes	-	9		
paper-based									
heater									

Fig. S7 Two months old heater data. (a) Time-dependent temperature profile of the heater at different applied voltages for 60 sec (0.5-5V). (b) Temperature response to voltage on-off studies testing under various voltages (1V to 5V).

References:

- 1 V. Sharma, A. Koivikko, K. Yiannacou, K. Lahtonen and V. Sariola, *npj Flexible Electronics* 2020 4:1, 2020, **4**, 1–8.
- 2 Z. Ma, S. Kang, J. Ma, L. Shao, A. Wei, C. Liang, J. Gu, B. Yang, D. Dong, L. Wei and Z. Ji, *ACS Nano*, 2019, **13**, 7578–7590.
- M. N. Gueye, A. Carella, R. Demadrille and J. P. Simonato, *ACS Appl. Mater. Interfaces*, 2017, **9**, 27250–27256.
- 4 B. Sun, R. Xu, X. Han, J. Xu, W. Hong, Y. Xu, Z. Fu, H. Zhu, X. Sun, J. Wang, P. Cui, J. Chang, J. Xiong and K. Qian, *npj Flexible Electronics 2022 6:1*, 2022, **6**, 1–9.
- 5 Y. Yang, S. Chen, W. Li, P. Li, J. Ma, B. Li, X. Zhao, Z. Ju, H. Chang, L. Xiao, H. Xu and Y. Liu, *ACS Nano*, 2020, **14**, 8754–8765.
- 6 W. Hong, B. Sun, Z. Li, Z. Fu, J. Zhang, M. Jiang, Y. Zhang, Y. Li, Y. Zhang and K. Qian, ACS Appl Electron. Mater., 2022, 4, 5446–5455.
- 7 H. J. Kim, Y. Kim, J. H. Jeong, J. H. Choi, J. Lee and D. G. Choi, *J. Mater. Chem. A*, 2015, **3**, 16621–16626.
- 8 H. Park, H. Kim, S. H. Kim, E. Cho, H. K. Kim and S. J. Lee, *Thin Solid Films*, 2022, **753**, 139294.
- 9 W. Lim, A. Khadka, B. Y. Kim, C. Park, A. Aldalbahi, G. Periyasami, B. Joshi and S. S. Yoon, *J Mater. Sci. Technol.*, 2023, **164**, 27–36.