Electronic Supplementary Information

Molecular engineering of donor-acceptor heptazine-based porous organic polymers for selective photoreduction of CO₂ to CO under non-sacrificial conditions in water

Amit Kumar^a, Pravesh Kumar^a, Durgesh Pandey^b, Neha Saini^a, Kirti Dhingra^a, Dibyajyoti Ghosh^b, and Kamalakannan Kailasam^a*

^a Advanced Functional Nanomaterials, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Manauli, SAS Nagar, 140306, Mohali, Punjab, India

^b Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016 New Delhi, India

*Email: kamal@inst.ac.in, kkamal17@gmail.com

1 Experimental

1.1. Synthesis of HEP-EDDA

The synthesis of HEP-EDDA was adapted from the reported procedure.¹ A flame-dried round bottom flask (RBF-1) was charged with 4,4'-(ethyne-1,2-diyl)dianiline (EDDA) (0.100 g, 0.4807 mmol) and dissolved in 1,4-dioxane (30 mL). Diisopropylamine (0.5 mL) was added and stirred for 20 min in ice-cold water. In RBF-2, 2,5,8-trichloro-*s*-heptazine (HEP) (0.088 g, 0.3205 mmol) was dissolved in 20 mL of 1,4-dioxane. Then, the solution from RBF-2 was dropwise added to the RBF-1 over a period of 20 min with constant stirring. The RBF-1 was flash-frozen at -196 °C under the N₂ atmosphere. Then, the system was degassed by a vacuum pump, and the solution was liquefied. After the three cycles of freeze-pump-thaw, the RBF-1 was sealed and stirred at room temperature for 1 h. Then, the reaction mixture was heated at 110 °C for 72 h to get the light yellow precipitate of HEP-EDDA. The precipitates were washed with acetone, hexane, ethyl acetate, dimethylsulfoxide (DMSO), methanol, 1,4-dioxane, and THF. For further purification the precipitates were soxhlet extracted with 1:1 mixture of THF and methanol for 24 h and then overnight kept at 120 °C in the vacuum oven.

Scheme S1: Synthesis of HEP-EDDA.

1.2. Synthesis of HEP-BDDA

The synthesis of HEP-BDDA was adapted from the reported procedure.¹ A flame-dried round bottom flask (R1) was charged with 4,4'-(buta-1,3-diyne-14-diyl)dianiline (BDDA) (0.080 g, 0.3448 mmol) and dissolved in 1,4-dioxane (30 mL). Then diisopropylamine (0.5 mL) was added and stirred for 20 min in ice-cold water. In round bottom flask (R2), 2,5,8-trichloro-*s*-heptazine (HEP) (0.063 g, 0.2298 mmol) was dissolved in 20 mL of 1,4-dioxane. Then, the HEP from R2 was dropwise slowly added to the R1 with constant stirring. The R1 was flash-frozen at -196 °C under the N₂ atmosphere. Then, the system was degassed by a vacuum pump, and the solution was liquefied. After the three cycles of freeze-pump-thaw, the R1 was sealed and stirred at room temperature for 1 h. Then the reaction mixture was heated at 110 °C for 72 h to get the light yellow precipitate of HEP-EDDA. The precipitates were washed with acetone, hexane, ethyl acetate, dimethylsulfoxide (DMSO), methanol, 1,4-dioxane, and THF. For further purification the precipitates were soxhlet extracted with a (1:1) mixture of THF and methanol for 24 h and then dried overnight kept at 120 °C in the vacuum oven.

Scheme S2: Synthesis of HEP-BDDA.

1.3. Synthesis of HEP-BTET

The synthesis of HEP-BTET was adapted from the reported procedure.¹ A flame-dried round bottom flask (RBF-1) was charged with 4,4',4"-(benzene-1,3,5-triyltris(ethyne-2,1-diyl)trianiline (BTET) (0.080 g, 0.0.1814 mmol) and dissolved in 1,4-dioxane (30 mL). Then Diisopropylamine (0.5 mL) was added and stirred for 20 min in ice-cold water. In RBF-2, 2,5,8-trichloro-*s*-heptazine (HEP) (0.052 g, 0.1884 mmol) was dissolved in 20 mL of 1,4-dioxane. Then, the solution from RBF-2 was added dropwise to the RBF-1 over a period of 20 min with constant stirring. The RBF-1 was flash-frozen at -196 °C under the N₂ atmosphere. Then, the system was degassed by a vacuum pump, and the solution was liquefied. After the three cycles of freeze-pump-thaw, the RBF-1 was sealed and stirred at room temperature for 1 h. Then, the reaction mixture was heated at 110 °C for 72 h to obtain the light yellow precipitate of HEP-EDDA. The precipitates were washed with acetone, hexane, ethyl acetate, dimethylsulfoxide (DMSO), methanol, 1,4-dioxane, and THF. For further purification the precipitates were soxhlet extracted with (1:1) mixture of THF and methanol for 24 h and then overnight kept at 120 °C in the vacuum oven.

Scheme S3: Synthesis of HEP-BTET.

2. Apparent quantum yield (AQY %) calculations

It is defined as the number of electrons involved in the photocatalytic reduction to the number of incident photons.^{2,3} The apparent quantum yield (AQY) for the photoreduction reaction was calculated with 5 mg of the catalyst under light irradiation for 3 h using an Xe lamp (400 W) with a band-pass filter of 500 nm. It is assumed that the incident photons are all absorbed by the sample. The AQY was calculated according to the below equation:

$$AQY(\%) = \frac{Number of reacted electron}{Number of incident photons} \times 100$$
(1)

As, two electrons are involved in the photoreduction of CO₂ to CO. The above equation became:

$$AQY (\%) = \frac{2 \times N_e}{N_p} \times 100 = \frac{(2 \times M \times N_A)}{(I \times A \times t \times \lambda)/(h \times c)} \times 100 = \frac{2 \times M \times N_A \times h \times c}{I \times A \times t \times \lambda} \times 100$$
(2)

M = no of CO evolved

 $N_A = Avogadro's$ number

- I = intensity of incident light (Wcm⁻²)
- A = area of irradiation (cm²)
- t = time of irradiation (s)
- h = Planck's constant (Js)
- $c = the speed of light (ms^{-1})$

 λ is the wavelength of monochromatic light (m)

3. General procedure for quantification of H₂O₂

The quantification of H₂O₂ was carried out by iodometry method based on previous literature,^{4,5} 100 μ L solution from the reaction mixture was added to the freshly prepared solution of 450 μ L of 0.4 molL⁻¹ potassium iodide (KI) aqueous solution, and 450 μ L of 0.1 molL⁻¹ potassium hydrogen phthalate (C₈H₅KO₄) aqueous solution, which was kept in the dark at low temperature for 30 min. The produced H₂O₂ molecule produces triiodide anions (I₃⁻) by the reaction of (I⁻¹) under the acidic

conditions $(H_2O_2 + 3I^- + 2H^+ \rightarrow I_3^- + 2H_2O)$. The quantification of the amount of (I_3^-) formed was evaluated by UV-vis spectroscopy, (I_3^-) having a strong absorbance at 350 nm.

Figure S1: Powder X-ray diffraction of photocatalytic networks (a) HEP-EDDA, (b) HEP-BDDA, and (c) HEP-BTET.

Figure S2: Pore size distribution curves by NLDFT method of (a) HEP-EDDA, (b) HEP-BDDA, and (c) HEP-BTET.

Figure S3: CO₂ uptake for HEP-BTET, HEP-BDDA, and HEP-EDDA at 273 K.

Figure S4: Mott-Schottky plots of photocatalysts (a) HEP-EDDA, (b) HEP-BDDA, and (c) HEP-BTET.

Figure S5: Thermogravimetric analysis of (a) HEP-EDDA, (b) HEP-BTET, and (c) HEP-BDDA in N₂ atmosphere.

Figure S6: CO₂-GC chromatogram of (**a**) HEP-EDDA, (**b**) HEP-BDDA, and (**c**) HEP-BTET for photoreduction of CO₂.

Figure S7: FTIR spectra before and after photocatalysis of (a) HEP-EDDA, (b) HEP-BDDA, and (c) HEP-BTET.

Figure S8: N₂ adsorption-desorption isotherm after photocatalysis of (**a**) HEP-EDDA, (**b**) HEP-BDDA, and (**c**) HEP-BTET.

Figure S9: Control experiments for photoreduction of CO_2 . Reaction condition: 5 mg catalyst, 3 mL H₂O, CO_2 (1 atmosphere), and solar simulated light: 100 mW cm⁻².

Figure S10: GC-MS analysis using ¹³CO₂ as source of CO₂ after photoreduction reaction.

Figure S11: EPR spectra of (a) HEP-EDDA, (b) HEP- BTET, and (c) HEP-BDDA at different experimental conditions.

Figure S12: (a) Optimized structure of the surface of repeating unit of HEP-BTET, (b) Absorption and activation of the CO₂ molecule, (c) Formation of COOH Intermediate, and (d) Desorption of CO from the catalyst surface.

Table S1: Elemental Analysis of HEP-EDDA, HEP-BDDA and HEP-BTET under solvent-free conditions.

	C (%)	N (%)	C/N (Experimental)	C/N (Theoretical)
HEP-EDDA	57.50	23.70	2.42	2.57
HEP-BDDA	60.14	21.86	2.75	2.85
HEP-BTET	60.76	16.79	3.61	3.42

Photocatalyst	Light Source	Reaction agents* and	CO [(µmolg ⁻¹ h ⁻¹) and	Ref.
		Solvent	selectivity (%)]	
Triazine based				
Fe SAS/Tr-COF	Xe lamp	TEOA and MeCN/H ₂ O	980.30 and 96	[6]
20%-Ni-CTAB-CTF-1	Xe lamp	TEOA and MeCN/H ₂ O	1254.15 and 99	[7]
CTF-Bpy-	Xe lamp	[Ru(bpy) ₃ Cl ₂].6H ₂ O	1200.00 and 84	[8]
Co[Ru(bpy)3]Cl2		TEOA and MeCN/H ₂ O		
Ni(OH)2-CTF-1	Xe lamp	[Ru(bpy) ₃ Cl ₂].6H ₂ O	38.66	[9]
		/TEOA and MeCN/H2O		
PD@Imine-CTF	Xe lamp	TEOA and H ₂ O	85.3 and 92 %	[10]
SnS ₂ /S-CTFs	Xe lamp	TEOA and H_2O	123.60	[11]
a-Fe ₂ O ₃ @Por-	Xe lamp	[Ru(bpy) ₃ Cl ₂].6H ₂ O	8.00 and 93	[12]
CTFx/Ru(bpy)3Cl2		TEOA and DMF		
CT-COF	Xe lamp	H ₂ O	102.70	[13]
CTF-BP	Xe lamp	TEOA and H ₂ O/MeCN	4.60	[14]
DA-CTF	Xe lamp	TEOA and MeCN	4.00	[15]
Re-CTF-py	Xe lamp	TEOA and MeCN	353.05	[16]
Heptazine based				
Porous C ₆ N ₇	Xe lamp	Water	6.88	[17]
d5-PCN-NSs	Xe lamp	Co(bpy) ₃ ²⁺ /TEOA and MeCN/H ₂ O	39.30	[18]

Table S2: Comparison with the previously reported heptazine and triazine-based photocatalyst for CO₂ reduction.

TCN(NH ₂)	Xe lamp	CoCl ₂ , 2,2-bipyridine/TEOA and MeCN	103.60	[19]
g-C ₃ N ₄ with nitrogen vacancies	Xe lamp	CoCl ₂ , 2,2-bipyridine/TEOA and MeCN	56.90	[20]
BIF-20@g-C 3N 4 nanosheet	Xe lamp	TEOA and MeCN	53.90	[21]
HEP-BTET	solar simulated light	Water	8830.00 and ~98	This work

* Reaction agents: Sacrificial agents and Photosensitizers.

Table S3: Gibbs free energies of different species involved during the photoreduction of CO₂.

Species	ΔG (Hartrees)
Catalyst	-2043.327383
CO_2	-188.65592
CO ₂ *	-2231.892561
COOH*	-2232.426219
CO*	-2156.596111
СО	-113.363129
CHO*	-2157.166317
OH*	-2119.071429
H ₂ O ₂	-151.596618

References:

- 1 N. Sharma, B. Ugale, S. Kumar and K. Kailasam, *Front. Chem.*, 2021, 9, 1–11.
- 2 M. Lu, M. Zhang, J. Liu, T. Y. Yu, J. N. Chang, L. J. Shang, S. L. Li and Y. Q. Lan, J.

Am. Chem. Soc., 2022, 144, 1861–1871.

- 3 N. Saini, N. Sharma, D. K. Chauhan, R. Khurana, M. E. Ali and K. Kailasam, *J. Mater. Chem. A*, 2023, **11**, 25743–25755.
- 4 V. R. Battula, B. Rawat and K. Kailasam, ACS Appl. Polym. Mater., 2023, 5, 1989–1997.
- 5 Z. Wei, M. Liu, Z. Zhang, W. Yao, H. Tan and Y. Zhu, *Energy Environ. Sci.*, 2018, **11**, 2581–2589.
- L. Ran, Z. Li, B. Ran, J. Cao, Y. Zhao, T. Shao, Y. Song, M. K. H. Leung, L. Sun and J. Hou, J. Am. Chem. Soc., 2022, 144, 17097–17109.
- J. Tian, J. Zhang, B. Xu, Q. Chen, G. Huang and J. Bi, *ChemSusChem*, 2022, 15, e202201107.
- 8 X. Hu, L. Zheng, S. Wang, X. Wang and B. Tan, *Chem. Commun.*, 2022, **58**, 8121–8124.
- T. Zhao, Q. Niu, G. Huang, Q. Chen, Y. Gao, J. Bi and L. Wu, *J. Colloid Interface Sci.*, 2021, 602, 23–31.
- 10 S. Guo, Y. Xiao and B. Jiang, ACS Sustain. Chem. Eng., 2021, 9, 12646–12654.
- S. Guo, P. Yang, Y. Zhao, X. Yu, Y. Wu, H. Zhang, B. Yu, B. Han, M. W. George and Z. Liu, *ChemSusChem*, 2020, **13**, 6278–6283.
- S. Zhang, S. Wang, L. Guo, H. Chen, B. Tan and S. Jin, J. Mater. Chem. C, 2020, 8, 192–200.
- K. Lei, D. Wang, L. Ye, M. Kou, Y. Deng, Z. Ma, L. Wang and Y. Kong, *ChemSusChem*, 2020, 13, 1725–1729.
- J. Li, P. Liu, H. Huang, Y. Li, Y. Tang, D. Mei and C. Zhong, ACS Sustain. Chem. Eng.,
 2020, 8, 5175–5183.
- H. Zhong, Z. Hong, C. Yang, L. Li, Y. Xu, X. Wang and R. Wang, *ChemSusChem*, 2019, 12, 4493–4499.

- R. Xu, X.-S. Wang, H. Zhao, H. Lin, Y.-B. Huang and R. Cao, *Catal. Sci. Technol.*, 2018, 8, 2224–2230.
- 17 Gao Z, Jiang Z, Liu M, Yang Y, Ali S, Xie Q, Li Y, Gu S, Liu Y, Tang J, Pan C, Yuan J, Yu G. *Sci. China Chem.*, 2024, **67**.
- 18 R. Wang, P. Yang, S. Wang and X. Wang, J. Catal., 2021, 402, 166–176.
- Z. Mo, X. Zhu, Z. Jiang, Y. Song, D. Liu, H. Li, X. Yang, Y. She, Y. Lei, S. Yuan, H. Li,
 L. Song, Q. Yan and H. Xu, *Appl. Catal. B Environ.*, 2019, 256, 117854.
- H. Shi, S. Long, J. Hou, L. Ye, Y. Sun, W. Ni, C. Song, K. Li, G. G. Gurzadyan and X.
 Guo, *Chem. A Eur. J.*, 2019, 25, 5028–5035.
- 21 G. Xu, H. Zhang, J. Wei, H. X. Zhang, X. Wu, Y. Li, C. Li, J. Zhang and J. Ye, ACS Nano, 2018, 12, 5333–5340.