Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supplementary information

Advantageous Electrochemical Behaviour of New Core-Shell Structured Cathodes over

Nickel-Rich Ones for Lithium-Ion Batteries

Yuvashri Jayamkondan, ^a Boris Markovsky, ^b Doron Aurbach, ^b Prasant Kumar Nayak^{a,*}

^aMaterials Electrochemistry Research Laboratory, Department of Chemistry,

SRM Institute of Science and Technology, Kattankulathur, Chennai, India - 603203.

^bDepartment of Chemistry, BINA – BIU Institute of Nanotechnology and Advanced materials,

INIES – Israel National Institute for Energy Storage Bar-Ilan University, Ramat Gan-

5290002, Israel

*E-mail: prasantn1@srmist.edu.in

Samples	Charge canacity /	Discharge canacity /	Coulombic	Irreversible
~ mpros				•

Table S1. Electrochemical characteristics of initial cycles (0.1 C) for the synthesized cathodes.

Samples	Charge capacity / mAh g ⁻¹	Discharge capacity / mAh g ⁻¹	Coulombic efficiency / %	Irreversible capacity loss / %
NMC85	267	216	81	19
NR-CS	255	212	83	17
NR-LR	183	140	76	24

 Table S2. Electrodes resistances parameters for NMC85, NR-CS and NR-LR electrodes

 extracted from the EIS measurements.

Electrodes	$R_{s}(\Omega)$	$R_{sf}(\Omega)$	$R_{ct}(\Omega)$
NMC85	5.129	21.75	7844
NR-CS	6.770	37.15	2453
NR-LR	6.170	31.6	3419

Fig. S1. HRSEM elemental mapping of NR-CS cathode, (a) NR-CS at 3 µm scale bar, (b) all elements, (c) Ni, (d) Mn, (e) Co, and (f) O.

Fig. S2. Initial cycle, cycling & voltage profile for the 2^{nd} , 10^{th} , & 25^{th} cycles and initial dQ/dV vs. V plot of NR-LR in the voltage range of 2.0-4.6 V at 0.1 C (25 °C).

Because of small proportion of Li-rich phase in the integrated material NR-LR, the high voltage activation plateau is not clearly observed as previously reported.³⁹

Fig. S3. SEM images of pristine (uncycled) and cycled (after 120 cycles) electrodes. Ni-rich NMC85 (a, b), NR-CS (c. d) and NR-LR (e, f). The scale bar is 5 μm.

Fig. S4. Raman spectra of Ni-rich NMC85 (a), Ni-rich and Mn-based Li-rich NR-CS (b) and NR-LR (c) layered oxide cathodes: Pristine (uncycled) and cycled (after 120 cycles) electrodes as indicated.

Fig. S5. Commercial graphite powder: (a) XRD pattern, (b) SEM images in the scale bar of 1 μm and (c) Raman spectra.