Supporting Information

Interfacial electronic and defect engineering coupling of S-scheme CsSnBr₃/SnS_x(x = 1, 2) heterostructures with carrier dynamics for solar cells

Minjie Zhang¹, Ningning Yao¹, Yanming Lin^{1*}, Zhenyi Jiang^{1*}, and Aijun Du²

¹Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an 710127, P. R. China
²School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia

^{*} Corresponding author Tel.: 86-29-88303492, Fax: 86-29-88302331, Electronic mail: <u>ymlin@nwu.edu.cn</u>. (Y. Lin), <u>jiangzy@nwu.edu.cn</u>. (Z. Jiang).

Supporting Figures

Fig. S1. The calculated band gap concerning different *α* parameters: (a) CsSnBr₃ and (b) SnS monolayer.

Fig. S2. Calculated band structures of the $CsSnBr_3$ bulk using (a) GGA-PBE, (b) GGA-PBE + SOC, (c) HSE06 functional and (d) HSE06 functional + SOC.

Fig. S3. Calculated band structures of the SnS monolayer using (a) GGA-PBE, (b) GGA-PBE + SOC, (c) HSE06 functional and (d) HSE06 functional + SOC.

Fig. S4. Calculated optical absorption of SnS monolayer, CsSnBr₃ (001), CsSnBr₃/SnS heterostructure (with CsBr terminal) and CsSnBr₃/SnS heterostructure (with SnBr₂ terminal).

Fig. S5. Optimized crystal structure: top view and side view of the (a) $CsSn(Br_{0.8}Cl_{0.2})_3/SnS$, (b) $CsSn(Br_{0.6}Cl_{0.4})_3/SnS$, (c) $CsSn(Br_{0.55}Cl_{0.45})_3/SnS$ heterostructure, (cyan, gray, brown, green, and yellow represent the Cs, Sn, Br, Cl, and S atoms).

Fig. S6. Optimized crystal structure: top view and side view of the (a) $V_{Br(3.1\%)}$ -CsSnBr₃/SnS, (b) $V_{Br(4.7\%)}$ -CsSnBr₃/SnS, (c) $V_{Br(7.8\%)}$ -CsSnBr₃/SnS heterostructure, (cyan, gray, brown, and yellow represent the Cs, Sn, Br, and S atoms).

Fig. S7. Optimized crystal structure: top view and side view of the (a) $CsSn_{0.83}Ti_{0.17}Br_3/SnS_2$, (b) $CsSn_{0.67}Ti_{0.33}Br_3/SnS_2$, (c) $CsSn_{0.50}Ti_{0.50}Br_3/SnS_2$ heterostructure, (cyan, gray, sky blue, brown, and yellow represent the Cs, Sn, Ti, Br, and S atoms).

(a) $CsSn(Br_{0.67}Cl_{0.33})_3/SnS_2$

Fig. S8. Optimized crystal structure: top view and side view of (a) $CsSn(Br_{0.67}Cl_{0.33})_3/SnS_2$ heterostructure, (cyan, gray, brown, green and yellow represent the Cs, Sn, Br, Cl and S atoms).

Fig. S9 Calculated: (a) band structure, (b) Projected band structure and PDOS based on HSE06 functional of the CsSnBr₃ bulk. The Fermi level is set to 0 eV by a horizontal black dashed line.

Fig. S10 Calculated band structure: (a) $CsSnBr_3$ (001), (b) SnS monolayer, (c) $CsSnBr_3/SnS$, (d) $CsSn_{0.875}Ti_{0.125}Br_3/SnS$, (e) $V_{Br(6.3\%)}$ - $CsSnBr_3/SnS$, and (f) $CsSn(Br_{0.87}Cl_{0.13})_3/SnS_2$ heterostructure. The Fermi level is set to 0 eV by a horizontal black dashed line.

Fig. S11 Calculated band structure and Projected band structure: (a) $CsSnBr_3/SnS$, (b) $CsSn_{0.875}Ti_{0.125}Br_3/SnS$ heterostructure with GGA-PBE. The Fermi level is set to 0 eV by a horizontal black dashed line.

Fig. S12 Calculated band structure and Projected band structure: (a) $CsSn(Br_{0.8}Cl_{0.2})_3/SnS$, (b) $CsSn(Br_{0.6}Cl_{0.4})_3/SnS$, (c) $CsSn(Br_{0.55}Cl_{0.45})_3/SnS$ heterostructure with GGA-PBE. The Fermi level is set to 0 eV by a horizontal black dashed line.

Fig. S13 Calculated band structure and Projected band structure: (a) $V_{Br(3.1\%)}$ -CsSnBr₃/SnS, (b) $V_{Br(4.7\%)}$ -CsSnBr₃/SnS, (c) $V_{Br(6.3\%)}$ -CsSnBr₃/SnS, (d) $V_{Br(7.8\%)}$ -CsSnBr₃/SnS heterostructure with GGA-PBE. The Fermi level is set to 0 eV by a horizontal black dashed line.

Fig. S14 Calculated band structure and Projected band structure: (a) $CsSn_{0.83}Ti_{0.17}Br_3/SnS_2$, (b) $CsSn_{0.67}Ti_{0.33}Br_3/SnS_2$, (c) $CsSn_{0.50}Ti_{0.50}Br_3/SnS_2$ heterostructure with GGA-PBE. The Fermi level is set to 0 eV by a horizontal black dashed line.

Fig. S15 Calculated band structure and Projected band structure: (a) $CsSn(Br_{0.87}Cl_{0.13})_3/SnS_2$, (b) $CsSn(Br_{0.67}Cl_{0.33})_3/SnS_2$ heterostructure with GGA-PBE. The Fermi level is set to 0 eV by a horizontal black dashed line.

Fig. S16 Work function of (a) $CsSn_{0.875}Ti_{0.125}Br_3$ (001) surface, (b) $V_{Br(6.3\%)}$ -CsSnBr₃ (001) surface, and (c) $CsSn(Br_{0.87}Cl_{0.13})_3$ (001) surface.

Fig. S17 Device structure of the (a) CsSnBr₃ perovskite solar cell, (b) Energy level diagram of the CsSnBr₃ perovskite device (FTO/SnO₂/CsSnBr₃/Spiro-OMeTAD/Au), and (c) Simulated results (V_{oc} , J_{sc} , FF, and PCE).

Fig. S18 Solar cells device structure of the (a) $CsSnBr_3/SnS$, (b) $CsSn_{0.875}Ti_{0.125}Br_3/SnS$, and (c) $V_{Br(6.3\%)}$ - $CsSnBr_3/SnS$ heterostructure.

Fig. S19 Solar cells device structure of the (a) $CsSnBr_3/SnS_2$, (b) $CsSn(Br_{0.87}Cl_{0.13})_3/SnS_2$, and (c) $V_{Br(3.7\%)}$ - $CsSnBr_3/SnS_2$ heterostructure.

Parameters	SnO ₂ ^[3]	Spiro-	FTO ^[5]
		OMeTAD ^{[4}	
]	
Thickness (nm)	100	200	100
E_g (eV)	3.50	3.00	3.50
Electron Affinity, χ (eV)	4.00	2.45	4.00
Relative permitivity, ε_r	9.00	3.00	9.00
Effective CB density of states, Nc (cm ⁻³)	2.2×10 ¹⁸	2.2×10 ¹⁸	2.0×10 ¹⁸
Effective VB density of states, Nv (cm ⁻³)	2.2×10 ¹⁸	1.9×10 ¹⁹	1.8×10 ¹⁹
Electron mobility, μ_n (cm ² /Vs)	20	100	20
Hole mobility, μ_p (cm ² /Vs)	10	100	10
Electron Thermal Velocity (cm/s)	1.0×10^{17}	1.0×10^{17}	1.0×10 ¹⁷
Hole Thermal Velocity (cm/s)	1.0×10^{17}	1.0×10 ¹⁷	1.0×10 ¹⁷
Donor concentration, N_D (cm ⁻³)	1.0×10^{17}	0	1.0×10 ¹⁵
Acceptor concentration, N_A (cm ⁻³)	0	2.0×10 ¹⁹	0
Defect density, N_t (1/cm ³)	1.0×10 ¹⁵	1.0×10 ¹⁵	1.0×10 ¹⁵

Table S1. Input parameters of the Electron transfer layer, Hole transfer layer, and FTO.

Parameters	CsSnBr ₃ ^[6]	SnS ^[7]	$\mathrm{SnS}_{2}^{[8]}$
Thickness (nm)	470	400	400
$E_g (\mathrm{eV})$	0.20-1.15	2.13	2.13
Electron Affinity, χ (eV)	4.07	4.20	4.24
Relative permitivity, ε_r	5.90	13.00	10.00
Effective CB density of states, Nc (cm ⁻³)	1.0×10 ¹⁹	1.18×10 ¹⁸	2.2×10 ¹⁸
Effective VB density of states, Nv (cm ⁻³)	1.0×10 ¹⁹	4.76×10 ¹⁸	1.8×10 ¹⁹
Electron mobility, μ_n (cm ² /Vs)	2	30	500
Hole mobility, μ_p (cm ² /Vs)	2	9.4	500
Electron Thermal Velocity (cm/s)	1.0×10^{17}	1.0×10 ¹⁷	1.0×10^{17}
Hole Thermal Velocity (cm/s)	1.0×10^{17}	1.0×10 ¹⁷	1.0×10^{17}
Donor concentration, N_D (cm ⁻³)	0	1.0×10 ¹⁷	1.0×10^{17}
Acceptor concentration, N_A (cm ⁻³)	1.0×10 ¹⁵	0	0
Defect density, N_t (1/cm ³)	1.0×10 ¹⁵	1.0×10 ¹⁵	1.0×10 ¹⁵

Table S2. Input parameters of the $CsSnBr_3$ absorber layer, SnS absorber layer, and SnS_2 absorber layer.

CsSnBr₃ CIF

data CONTCAR audit creation date 2024-01-17 audit creation method 'Materials Studio' 'P1' _symmetry_space_group_name_H-M _symmetry_Int_Tables_number 1 triclinic symmetry cell setting loop symmetry equiv pos as xyz x,y,z _cell_length a 5.8484 cell length b 5.8484 cell length c 5.8484 _cell_angle_alpha 90.0000 90.0000 _cell_angle_beta _cell_angle_gamma 90.0000 loop atom site label _atom_site_type_symbol _atom_site_fract_x atom site fract y _atom_site_fract_z atom site U iso or equiv _atom_site_adp_type atom site occupancy Cs1 0.00000 0.00000 0.00000 0.01267 Uiso 1.00 Cs 1.00 Sn1 Sn 0.50000 0.50000 0.50000 0.01267 Uiso Br1 Br 0.00000 0.50000 0.50000 0.01267 Uiso 1.00 Br2 Br 0.50000 0.00000 0.50000 0.01267 Uiso 1.00 Br3 Br 0.50000 0.50000 0.00000 0.01267 Uiso 1.00

SnS CIF

data SnS audit creation date 2024-08-27 'Materials Studio' audit creation method _symmetry_space_group_name_H-M 'PMCN' _symmetry_Int_Tables_number 62 symmetry cell setting orthorhombic loop symmetry equiv pos as xyz x,y,z -x,y+1/2,-z+1/2 x+1/2,-y,-z -x+1/2,-y+1/2,z+1/2 -x,-y,-z x,-y+1/2,z+1/2 -x+1/2,y,z x+1/2,y+1/2,-z+1/2 cell length a 3.9900 _cell_length_b 4.3400 _cell_length_c 11.2000 cell angle alpha 90.0000 _cell_angle_beta 90.0000 90.0000 cell angle gamma loop atom site label _atom_site_type_symbol _atom_site_fract_x atom site fract y atom site fract z atom site U iso or equiv _atom_site_adp_type _atom_site_occupancy Sn1 Sn 0.25000 0.11500 0.11800 0.00000 Uiso 1.00 **S**1 S 0.75000 0.15000 Uiso 0.52200 0.00000 1.00

SnS₂ CIF

data SnS2 audit creation date 2024-08-27 'Materials Studio' audit creation method 'P1' _symmetry_space_group_name_H-M _symmetry_Int_Tables_number 1 triclinic symmetry cell setting loop symmetry equiv pos as xyz x,y,z _cell_length a 3.6758 cell length b 3.6758 cell length c 12.3389 _cell_angle_alpha 90.0000 _cell_angle_beta 90.0000 _cell_angle_gamma 120.0000 loop atom site label _atom_site_type_symbol _atom_site_fract_x atom site fract y _atom_site_fract_z atom site U iso or equiv _atom_site_adp_type atom site occupancy 0.33333 0.66667 0.62501 0.00000 Uiso 1.00 Sn0 Sn Sn1 Sn 0.66667 0.33333 0.12501 0.00000 Uiso 1.00 S2 S 0.66667 0.33333 0.74340 0.00000 Uiso 1.00 0.24340 **S**3 S 0.33333 0.66667 0.00000 Uiso 1.00 S4 S 0.00000 0.00000 0.00659 0.00000 Uiso 1.00 S5 S 0.00000 0.00000 0.50659 0.00000 Uiso 1.00

CsSnBr₃/SnS heterostructure CIF

data_C	CsSnBr3	3SnS								
audit	creatio	on_date	2024-08-27							
audit	_audit_creation_method				'Materials Studio'					
symn	_ netry_s	pace_group_	name_H-M	['P1'						
symn	netry Ii	nt Tables nu	ımber	1						
symn	netry_c	ell_setting		triclinic						
loop_										
_symn	netry_e	quiv_pos_as_	xyz							
 x,y,z	Z		_ •							
cell l	ength	a		8.2474						
cell	ength	b		16.6240						
cell	ength	с		32.9157						
cella	angle a	lpha		90.0000						
cella	angle b	oeta		90.0000						
cella	angle g	amma		90.0000						
loop	0 _0									
atom	site la	lbel								
atom	site ty	pe symbol								
atom	site fr	act x								
atom	site fr	act y								
atom	site fr	act z								
atom	site U	iso or equ	iv							
atom	site a	dp type								
atom	site o	ccupancy								
Snl	Sn	0.00000	0.25000	0.03038	0.01267	Uiso	1.00			
Sn2	Sn	0.50000	0.00000	0.03038	0.01267	Uiso	1.00			
Sn3	Sn	0.01385	0.24550	0.20385	0.01267	Uiso	1.00			
Sn4	Sn	0.51385	0.49550	0.20385	0.01267	Uiso	1.00			
Sn5	Sn	0.13015	0.00459	0.30019	0.01267	Uiso	1.00			
Sn6	Sn	0.13370	0.26059	0.30081	0.01267	Uiso	1.00			
Sn7	Sn	0.63370	0.01059	0.30081	0.01267	Uiso	1.00			
Sn8	Sn	0.63015	0.25459	0.30019	0.01267	Uiso	1.00			
Sn9	Sn	0.37938	0.13041	0.38810	0.01267	Uiso	1.00			
Sn10	Sn	0.37663	0.38034	0.38846	0.01267	Uiso	1.00			
Sn11	Sn	0.87663	0.13034	0.38846	0.01267	Uiso	1.00			
Sn12	Sn	0.87938	0.38041	0.38810	0.01267	Uiso	1.00			

Br13	Br	0.25000	0.12500	0.03038	0.01267	Uiso	1.00
Br14	Br	0.75000	0.37500	0.03038	0.01267	Uiso	1.00
Br15	Br	0.25000	0.37500	0.03038	0.01267	Uiso	1.00
Br16	Br	0.75000	0.12500	0.03038	0.01267	Uiso	1.00
Br17	Br	0.23408	0.12518	0.19553	0.01267	Uiso	1.00
Br18	Br	0.73408	0.37518	0.19553	0.01267	Uiso	1.00
Br19	Br	0.23349	0.36877	0.19671	0.01267	Uiso	1.00
Br20	Br	0.73349	0.11877	0.19671	0.01267	Uiso	1.00
Br21	Br	0.98456	0.24925	0.11493	0.01267	Uiso	1.00
Br22	Br	0.48456	0.49925	0.11493	0.01267	Uiso	1.00
Cs23	Cs	0.99761	0.49939	0.10840	0.01267	Uiso	1.00
Cs24	Cs	0.49761	0.24939	0.10840	0.01267	Uiso	1.00
S25	S	0.38234	0.11817	0.30984	0.01267	Uiso	1.00
S26	S	0.37640	0.36626	0.31004	0.01267	Uiso	1.00
S27	S	0.87640	0.11626	0.31004	0.01267	Uiso	1.00
S28	S	0.88234	0.36817	0.30984	0.01267	Uiso	1.00
S29	S	0.13032	0.49215	0.37947	0.01267	Uiso	1.00
S30	S	0.12855	0.24053	0.37840	0.01267	Uiso	1.00
S31	S	0.62854	0.49053	0.37840	0.01267	Uiso	1.00
S32	S	0.63032	0.24215	0.37947	0.01267	Uiso	1.00
Sn33	Sn	0.00000	0.75000	0.03038	0.01267	Uiso	1.00
Sn34	Sn	0.50000	0.50000	0.03038	0.01267	Uiso	1.00
Sn35	Sn	0.01385	0.74550	0.20385	0.01267	Uiso	1.00
Sn36	Sn	0.51385	0.99550	0.20385	0.01267	Uiso	1.00
Sn37	Sn	0.13015	0.50459	0.30019	0.01267	Uiso	1.00
Sn38	Sn	0.13370	0.76059	0.30081	0.01267	Uiso	1.00
Sn39	Sn	0.63370	0.51059	0.30081	0.01267	Uiso	1.00
Sn40	Sn	0.63015	0.75459	0.30019	0.01267	Uiso	1.00
Sn41	Sn	0.37938	0.63041	0.38810	0.01267	Uiso	1.00
Sn42	Sn	0.37663	0.88034	0.38846	0.01267	Uiso	1.00
Sn43	Sn	0.87663	0.63034	0.38846	0.01267	Uiso	1.00
Sn44	Sn	0.87938	0.88041	0.38810	0.01267	Uiso	1.00
Br45	Br	0.25000	0.62500	0.03038	0.01267	Uiso	1.00
Br46	Br	0.75000	0.87500	0.03038	0.01267	Uiso	1.00
Br47	Br	0.25000	0.87500	0.03038	0.01267	Uiso	1.00
Br48	Br	0.75000	0.62500	0.03038	0.01267	Uiso	1.00
Br49	Br	0.23408	0.62518	0.19553	0.01267	Uiso	1.00
Br50	Br	0.73408	0.87518	0.19553	0.01267	Uiso	1.00
Br51	Br	0.23349	0.86877	0.19671	0.01267	Uiso	1.00
Br52	Br	0.73349	0.61877	0.19671	0.01267	Uiso	1.00
Br53	Br	0.98456	0.74925	0.11493	0.01267	Uiso	1.00
Br54	Br	0.48456	0.99925	0.11493	0.01267	Uiso	1.00
Cs55	Cs	0.99761	0.99938	0.10840	0.01267	Uiso	1.00
Cs56	Cs	0.49761	0.74938	0.10840	0.01267	Uiso	1.00

S	0.38234	0.61817	0.30984	0.01267	Uiso	1.00
S	0.37640	0.86626	0.31004	0.01267	Uiso	1.00
S	0.87640	0.61626	0.31004	0.01267	Uiso	1.00
S	0.88234	0.86817	0.30984	0.01267	Uiso	1.00
S	0.13032	0.99215	0.37947	0.01267	Uiso	1.00
S	0.12855	0.74053	0.37840	0.01267	Uiso	1.00
S	0.62854	0.99053	0.37840	0.01267	Uiso	1.00
S	0.63032	0.74215	0.37947	0.01267	Uiso	1.00
	S S S S S S S	S 0.38234 S 0.37640 S 0.87640 S 0.88234 S 0.13032 S 0.12855 S 0.62854 S 0.63032	S 0.38234 0.61817 S 0.37640 0.86626 S 0.87640 0.61626 S 0.88234 0.86817 S 0.13032 0.99215 S 0.12855 0.74053 S 0.62854 0.99053 S 0.63032 0.74215	S0.382340.618170.30984S0.376400.866260.31004S0.876400.616260.31004S0.882340.868170.30984S0.130320.992150.37947S0.128550.740530.37840S0.628540.990530.37840S0.630320.742150.37947	S0.382340.618170.309840.01267S0.376400.866260.310040.01267S0.876400.616260.310040.01267S0.882340.868170.309840.01267S0.130320.992150.379470.01267S0.128550.740530.378400.01267S0.628540.990530.378400.01267S0.630320.742150.379470.01267	S0.382340.618170.309840.01267UisoS0.376400.866260.310040.01267UisoS0.876400.616260.310040.01267UisoS0.882340.868170.309840.01267UisoS0.130320.992150.379470.01267UisoS0.128550.740530.378400.01267UisoS0.628540.990530.378400.01267UisoS0.630320.742150.379470.01267Uiso

CsSnBr₃/SnS₂ heterostructure CIF

data_0	CsSnBr3	3SnS2						
_audit	_creatio	on_date		2024-08-27				
_audit	_creatio	on_method		'Materials S	Studio'			
_symr	netry_s	pace_group_	name_H-M	['P1'				
_symr	netry_Iı	nt_Tables_nu	ımber	1				
_symr	netry_c	ell_setting		triclinic				
loop_								
_symr	netry_e	quiv_pos_as_	_xyz					
х,у,	Z							
cell	length_	a		6.2440				
cell	length_	b		18.0250				
cell	length_	с		30.2615				
cell	angle_a	lpha		90.0000				
cell	angle_b	eta		90.0000				
cell	angle_g	amma		90.0000				
loop_								
_atom	_site_la	bel						
_atom	_site_ty	pe_symbol						
_atom	_site_fr	act_x						
_atom	_site_fr	act_y						
_atom	_site_fr	act_z						
_atom	_site_U	_iso_or_equ	iv					
_atom	_site_a	lp_type						
_atom	_site_o	ecupancy						
Cs1	Cs	0.00000	0.00000	0.12115	0.01267	Uiso	1.00	
Cs2	Cs	0.00000	0.33333	0.12115	0.01267	Uiso	1.00	
Cs3	Cs	0.00000	0.66667	0.12115	0.01267	Uiso	1.00	
Sn4	Sn	0.50000	0.16667	0.03305	0.01267	Uiso	1.00	
Sn5	Sn	0.50000	0.50000	0.03305	0.01267	Uiso	1.00	
Sn6	Sn	0.50000	0.83333	0.03305	0.01267	Uiso	1.00	
Sn7	Sn	0.50000	0.16667	0.20925	0.01267	Uiso	1.00	
Sn8	Sn	0.50000	0.50000	0.20925	0.01267	Uiso	1.00	

Sn9	Sn	0.50000	0.83333	0.20925	0.01267	Uiso	1.00
Br10	Br	0.00000	0.16667	0.03305	0.01267	Uiso	1.00
Br11	Br	0.00000	0.50000	0.03305	0.01267	Uiso	1.00
Br12	Br	0.00000	0.83333	0.03305	0.01267	Uiso	1.00
Br13	Br	0.00000	0.16667	0.20925	0.01267	Uiso	1.00
Br14	Br	0.00000	0.50000	0.20925	0.01267	Uiso	1.00
Br15	Br	0.00000	0.83333	0.20925	0.01267	Uiso	1.00
Br16	Br	0.50000	0.00000	0.03305	0.01267	Uiso	1.00
Br17	Br	0.50000	0.33333	0.03305	0.01267	Uiso	1.00
Br18	Br	0.50000	0.66667	0.03305	0.01267	Uiso	1.00
Br19	Br	0.50000	0.00000	0.20925	0.01267	Uiso	1.00
Br20	Br	0.50000	0.33333	0.20925	0.01267	Uiso	1.00
Br21	Br	0.50000	0.66667	0.20925	0.01267	Uiso	1.00
Br22	Br	0.50000	0.16667	0.12115	0.01267	Uiso	1.00
Br23	Br	0.50000	0.50000	0.12115	0.01267	Uiso	1.00
Br24	Br	0.50000	0.83333	0.12115	0.01267	Uiso	1.00
S25	S	0.68351	0.00362	0.30855	0.02660	Uiso	1.00
S26	S	0.18351	0.10362	0.30855	0.02660	Uiso	1.00
S27	S	0.68351	0.20362	0.30855	0.02660	Uiso	1.00
S28	S	0.18351	0.30362	0.30855	0.02660	Uiso	1.00
S29	S	0.68351	0.40362	0.30855	0.02660	Uiso	1.00
S30	S	0.18351	0.50362	0.30855	0.02660	Uiso	1.00
S31	S	0.68351	0.60362	0.30855	0.02660	Uiso	1.00
S32	S	0.18351	0.70362	0.30855	0.02660	Uiso	1.00
S33	S	0.68351	0.80362	0.30855	0.02660	Uiso	1.00
S34	S	0.18351	0.90362	0.30855	0.02660	Uiso	1.00
Sn35	Sn	0.01684	0.00362	0.35745	0.02406	Uiso	1.00
Sn36	Sn	0.51684	0.10362	0.35745	0.02406	Uiso	1.00
Sn37	Sn	0.01684	0.20362	0.35745	0.02406	Uiso	1.00
Sn38	Sn	0.51684	0.30362	0.35745	0.02406	Uiso	1.00
Sn39	Sn	0.01684	0.40362	0.35745	0.02406	Uiso	1.00
Sn40	Sn	0.51684	0.50362	0.35745	0.02406	Uiso	1.00
Sn41	Sn	0.01684	0.60362	0.35745	0.02406	Uiso	1.00
Sn42	Sn	0.51684	0.70362	0.35745	0.02406	Uiso	1.00
Sn43	Sn	0.01684	0.80362	0.35745	0.02406	Uiso	1.00
Sn44	Sn	0.51684	0.90362	0.35745	0.02406	Uiso	1.00
S45	S	0.35017	0.00362	0.40634	0.02660	Uiso	1.00
S46	S	0.85017	0.10362	0.40634	0.02660	Uiso	1.00
S47	S	0.35017	0.20362	0.40634	0.02660	Uiso	1.00
S48	S	0.85017	0.30362	0.40634	0.02660	Uiso	1.00
S49	S	0.35017	0.40362	0.40634	0.02660	Uiso	1.00
S50	S	0.85017	0.50362	0.40634	0.02660	Uiso	1.00
S51	S	0.35017	0.60362	0.40634	0.02660	Uiso	1.00
S52	S	0.85017	0.70362	0.40634	0.02660	Uiso	1.00

S53	S	0.35017	0.80362	0.40634	0.02660	Uiso	1.00
S54	S	0.85017	0.90362	0.40634	0.02660	Uiso	1.00

References

- 1B.H. Li, R.Y. Long, Y. Xia, and Q.X. Mi. Angew. Chem. Int. Ed. 2018, 57, 13154-13158.
- 2 D. Jain, G. Jain, A. Pal, S. Agarwal, and S. Kumar. Thin Solid Films 2023, 780, 139973-139979.
- 3 F. Azri, A. Meftah, N. Sengouga, and A. Meftah. Sol. Energy 2019, 181, 372-378.
- 4 Y.H. Khattak, F. Baig, A. Shuja, S. Beg, and B.M. Soucase. Sol. Energy 2020, 207, 579-591.

5 K. Decock, S. Khelifi, and M. Burgelman. Thin Solid Films 2011, 519, 7481-7484.

- 6 S.A. Dar and B.S. Sengar. Energy fuels 2024, 38, 8229-8248.
- 7 M.T. Islam and A.K. Thakur. Phys. Scr. 2023, 98, 105950-105971.

8 A. Ghosh, M.F.I. Bwian, F. Ahmed, A.A. Miazee, A. Nandi, and M.A. Azad. *J. Opt.* https://doi.org/10.1007/s12596-024-01800-6