Supporting Information

Figure S1. a) Molecular structure of CMD b) Photograph of the CMD, SnO_2 , SnO_2 + CMD mixture in H₂O solution before and after oscillation.

Figure S2 a) XPS spectra of SnO_2 and SnO_2 -CMD survey b) Na 1s XPS spectra of SnO_2 and SnO_2 -CMD films

Figure S3 XRD patterns of ITO/SnO₂ and ITO/SnO₂-CMD films.

Figure S4 EDS element distribution mapping of SnO₂-CMD

Figure S5 a) Optical transmittance spectra of ITO, SnO_2 , and SnO_2 -CMD films on ITO glass substrates. b) I–V curves of the devices of ITO/ETL/Ag with SnO_2 or SnO_2 -CMD ETL. The inset shows the device structure for conductivity measurement.

Figure S6. Screenshot of the calculation software for particulate size SnO_2 and SnO_2 -CMD.

Figure S7. AFM images of (a) SnO₂/PVSK and (b) SnO₂-CMD/PVSK films.

Figure S8 SEM cross-sectional view of the complete device based on the SnO₂(Control) and SnO₂-CMD (Target) perovskite solar cell.

Figure S9 Contact angles for perovskite precursor on the SnO₂ and SnO₂-CMD films

Figure S10 Ultraviolet photoelectron spectroscopy (UPS) of pristine SnO_2 , SnO_2 -CMD, and perovskite film.

Figure S11 Tauc plots of the (a) SnO_2 and SnO_2 -CMD films. (b) Tauc plots of the perovskite films on SnO_2 and SnO_2 -CMD

Figure S12 PCE distributions of PSCs with SnO₂ and SnO₂-CMD ETL from 30 device statistics, respectively.

Figure S13. Based on SnO₂ and SnO₂-CMD ETL, different perovskite compositions
J-V curves of champion PSCs. (a) MAPbI₃ (b) (FA_{0.85}MA_{0.15})_{0.95}Cs_{0.05}Pb(I_{0.85}Br_{0.15})₃
(c) FA_{0.991}MA_{0.009}Pb(I_{0.991}Br_{0.009})₃

Table S1. Fitted results of TRPL spectra of the perovskite films deposited on pristine SnO_2 and SnO_2 -CMD.

ETL	A_1	$\tau_1(ns)$	A_2	$\tau_2(ns)$	$\tau_{ave}(ns)$
SnO ₂	0.15	90.30	0.85	180.70	173.37
SnO ₂ -CMD	0.12	45.47	0.88	140.30	136.29

Table S2. Photovoltaic performance parameters of PSCs made with different concentrations of CMD.

Concentration(mg/mL)	$J_{\rm SC}({\rm mA/cm^2})$	$V_{\rm OC}({ m V})$	FF(%)	PCE(%)
0	24.64	1.140	82.19	23.09
0.5	25.07	1.158	83.36	24.20
1	25.16	1.158	84.89	24.73
1.5	25.12	1.157	83.96	24.40

Table S3. Photovoltaic data and hysteresis index of the pristine and CMD-modified PSCs.

ETL	Scan Direction	$J_{\rm SC}({\rm mA/cm^2})$	$V_{\rm OC}({ m V})$	FF(%)	PCE(%)	HI
SnO ₂	Reverse	24.64	1.1402	82.19	23.09	0.0307
	Forward	24.65	1.1410	79.58	22.38	
SnO ₂ -CMD	Reverse	25.16	1.1582	84.89	24.74	0.0170
	Forward	25.08	1.1584	83.70	24.32	