## **Supplementary Material**

## MOF-derived CeO<sub>2</sub> Catalysts with Pr Doping: Engineering Oxygen Vacancies for Improved CO<sub>2</sub> conversion to Dimethyl Carbonate

Jungseob So<sup>a,1</sup>, Min Hye Jeong<sup>b,1</sup>, Jungwon Yun<sup>c,1</sup>, Byeong-Seon An<sup>d</sup>, Seung-ik Kim<sup>a</sup>, Geun-yeong Kim<sup>a</sup> Hyun-Tak Kim<sup>a</sup>, Tae Sun Chang<sup>a</sup>, Jin Hee Lee<sup>a</sup>, Iljeong Heo<sup>a</sup>, Jinjoo An<sup>e</sup>, Young Woo You<sup>a,\*</sup>, Minkyu Kim<sup>f,\*</sup>, Young Jin Kim<sup>g,\*</sup>

<sup>a</sup>CO<sub>2</sub> & Energy Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34141, Republic of Korea

<sup>b</sup>Clean Air Research Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Daejeon 34129, Republic of Korea

<sup>c</sup>William G. Lowrie Chemical & Biomolecular Engineering, The Ohio State University, Ohio 43210, United States

<sup>d</sup>Analysis Center for Energy Research, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Daejeon 34129, Republic of Korea

<sup>e</sup>Chemical Process Solution Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34141, Republic of Korea

<sup>f</sup>School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea

<sup>g</sup>Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea

<sup>1</sup> These authors contributed equally to this work.

\* Corresponding author.

E-mail address: <u>ywyou@krict.re.kr</u> (Y.W. You), <u>mk\_kim@ynu.ac.kr</u> (M. Kim), <u>yjkim03@knu.ac.kr</u> (Y.J. Kim)



**Fig. S1**. Top and side views of the **a**) Pristine  $CeO_2$  (111), **b**) Pr substituted  $CeO_2$  (111) (Pr atom indicated with black solid line), and **c**)  $CeO_2$  (111) with 1  $O_V$  surfaces ( $O_V$  indicated with white solid line).



Fig. S2. X-ray diffraction (XRD) patterns of a series of sacrificial Ce-MOF templates.



**Fig. S3**. Nitrogen adsorption-desorption isotherms and the corresponding BET surface area of a series of sacrificial Ce-MOF templates.



Fig. S4. HAADF-HRSTEM images of CeO<sub>2</sub> (P).



Fig. S5. HAADF-HRSTEM images of CeO<sub>2</sub> (808).



Fig. S6. HAADF-HRSTEM images of CeO<sub>2</sub> (BTC).

![](_page_7_Picture_0.jpeg)

Fig. S7. HAADF-HRSTEM images of CePrOx (BTC).

![](_page_8_Figure_0.jpeg)

Fig. S8. HAADF-STEM image, the EDX, and the corresponding line profile analysis of CePrOx (BTC).

![](_page_9_Figure_0.jpeg)

Fig. S9. Ce  $L_{III}$  edge XANES spectra of cerium nitrate (Ce<sup>3+</sup>).

![](_page_10_Figure_0.jpeg)

Fig. S10. The effect of doping materials on the catalytic performance of MOF-derived ceria in the DMC synthesis from CO<sub>2</sub> and MeOH at 5 bars. Conditions: a methanol flow rate of 18  $\mu$ l/min and a CO<sub>2</sub> flow rate of 50 sccm, with performance measurements taken 100 minutes after initiating the reaction.

![](_page_11_Figure_0.jpeg)

Fig. S11. The effect of Pr content on the catalytic performance of CePr(x)Ox (BTC) samples (x = weight percentage of Pr in the mixed oxides) in the DMC synthesis from CO<sub>2</sub> and MeOH at 5 bars. Conditions: a methanol flow rate of 18  $\mu$ l/min and a CO<sub>2</sub> flow rate of 50 sccm, with performance measurements taken 100 minutes after initiating the reaction.

![](_page_12_Figure_0.jpeg)

**Fig. S12.** Raman spectra of CePr(x)Ox (BTC) (x = weight percentage of Pr in the mixed oxides) samples with fitted curves.

![](_page_13_Figure_0.jpeg)

Fig. S13. X-ray diffraction (XRD) patterns of CePrOx (BTC) before and after the reaction. Reaction conditions: methanol flow rate of 18  $\mu$ L/min and CO<sub>2</sub> flow rate of 50 sccm, conducted at 10 bar and 120 °C.

![](_page_14_Picture_0.jpeg)

Fig. S14. HAADF-STEM images of CePrOx (BTC) after reaction. Reaction conditions: methanol flow rate of 18  $\mu$ L/min and CO<sub>2</sub> flow rate of 50 sccm, conducted at 10 bar and 120 °C.

![](_page_15_Figure_0.jpeg)

Fig. S15. HAADF-STEM image, the EDX, and the corresponding line profile analysis of CePrOx (BTC) after reaction. Reaction conditions: methanol flow rate of 18  $\mu$ L/min and CO<sub>2</sub> flow rate of 50 sccm, conducted at 10 bar and 120 °C.

## Favored Configurations of CO<sub>2</sub>, CH<sub>3</sub>OH and DMC on CeO<sub>2</sub>(111)

We investigate the favored configurations with corresponding adsorption energies of  $CO_2$ , CH<sub>3</sub>OH and CH<sub>3</sub>OCOOCH<sub>3</sub> (DMC) on pristine CeO<sub>2</sub>(111), Pr-substituted CeO<sub>2</sub> (111), O<sub>v</sub>-CeO<sub>2</sub> (111) and Pr&Ov CeO<sub>2</sub> (111) surfaces shown in the figure S9-11. The adsorption energy of CO<sub>2</sub> exhibits similar values across all surfaces, with the strongest adsorption observed on the O<sub>v</sub>-CeO<sub>2</sub> (111) surface (~ 38.7 kJ/mol) and the weakest on the Pr-substituted CeO<sub>2</sub> (111) surface (~ 29.2 kJ/mol). For CH<sub>3</sub>OH, we observe relatively weak adsorption on both the pristine and Pr-substituted CeO<sub>2</sub> (111) surfaces, with binding energies of approximately 69 kJ/mol, whereas stronger adsorption is observed on surfaces containing oxygen vacancies (O<sub>v</sub>-CeO<sub>2</sub> (111) and Pr&O<sub>v</sub>-CeO<sub>2</sub> (111)), with binding energies of approximately 99 kJ/mol. Upon formation of DMC, a similar trend is observed to that of CH<sub>3</sub>OH, with relatively weak binding energies observed on both the pristine and Pr-substituted surfaces, and strong binding energies observed on Pr&O<sub>v</sub>-CeO<sub>2</sub> (111).

![](_page_17_Figure_0.jpeg)

**Fig. S16**. DFT predicted favored configurations of  $CO_2$  on **a**)  $CeO_2$  (111) **b**) Pr-CeO<sub>2</sub> (111) surface **c**)  $O_V$ -CeO<sub>2</sub> (111) surface and, **d**) Pr&O<sub>V</sub>-CeO<sub>2</sub> (111). The corresponding adsorption energies are provided the below figures. The oxygen atom bonding with carbon is colored yellow and the oxygen vacancy site is dashed and colored white.

![](_page_18_Figure_0.jpeg)

Fig. S17. DFT predicted favored configurations of  $CH_3OH$  on a)  $CeO_2(111)$  b) Pr-CeO<sub>2</sub>(111) surface c)  $O_V$ -CeO<sub>2</sub>(111) surface and, d) Pr&O\_V-CeO<sub>2</sub>(111). The corresponding adsorption energies are provided the below figures. The oxygen atom bonding with carbon is colored yellow and the oxygen vacancy site is dashed and colored white.

•

![](_page_19_Figure_0.jpeg)

**Fig. S18**. DFT predicted favored configurations of DMC on **a**)  $CeO_2(111)$  **b**)  $Pr-CeO_2(111)$  surface **c**)  $O_V$ -CeO<sub>2</sub>(111) surface and, **d**)  $Pr\&O_V$ -CeO<sub>2</sub>(111). The corresponding adsorption energies are provided the below figures. The oxygen atom bonding with carbon is colored yellow and the oxygen vacancy site is dashed and colored white.

![](_page_20_Figure_0.jpeg)

**Fig. S19.**  $\Delta G$  of CO<sub>2</sub> activation on various CeO<sub>2</sub> (111) surface (a) pristine CeO<sub>2</sub>, (b) CeO<sub>2</sub> w O<sub>V</sub>, (c) Pr-CeO<sub>2</sub>, (d) Pr-CeO<sub>2</sub> w O<sub>V</sub>, (e) CeO<sub>2</sub> w 2O<sub>V</sub> and (f) CeO<sub>2</sub> w 3O<sub>V</sub>. The oxygen atom bonding with carbon is colored yellow and the oxygen vacancy site is dashed and colored white.

| catalysts                     | Pr (wt.%) | Ce (wt.%) | Pr/(Ce+Pr) |
|-------------------------------|-----------|-----------|------------|
| CePr(7)Ox (BTC)               | 7.4       | 73.9      | 0.09       |
| CePr(15)Ox (BTC) <sup>a</sup> | 14.7      | 66.3      | 0.18       |
| CePr(30)Ox (BTC)              | 29.8      | 57.8      | 0.34       |

**Table S1**. Weight percentages of Pr and Ce in a series of CePrOx catalysts determined by ICP-OES analysis

<sup>a</sup>CePrOx (BTC) in main text corresponds to CePr(15)Ox (BTC)

| Peak Position<br>(eV)                            | $\operatorname{CeO}_{2}(\mathbf{P})$ | CeO <sub>2</sub> (808) | CeO <sub>2</sub> (BTC) | CePrOx<br>(BTC) | Ce(NO <sub>3</sub> ) <sub>3</sub> |
|--------------------------------------------------|--------------------------------------|------------------------|------------------------|-----------------|-----------------------------------|
| A: Pre-edge feature                              | 5718.15                              | 5718.24                | 5718.21                | 5718.17         | -                                 |
| $B: Ce^{3+}, 2p \rightarrow 4f^15d^1$            | 5724.83                              | 5724.53                | 5724.08                | 5724.58         | 5724.31                           |
| C: Ce <sup>4+</sup> , $2p \rightarrow 4f^05d^1$  | 5728.63                              | 5728.82                | 5728.56                | 5728.57         | -                                 |
| D: Ce <sup>4+</sup> , $2p \rightarrow 4f^15d^1v$ | 5736.05                              | 5736.07                | 5736.12                | 5736.04         | -                                 |

**Table S2**. Results of XANES peak fitting using Ce  $L_{III}$  edge XANES spectra

| Peak         | Origin of cerium          | Peak decomposition |      |
|--------------|---------------------------|--------------------|------|
| Assignment   | contribution <sup>–</sup> | Peak               | FWMH |
| v0           | Ce <sup>3+</sup>          | 880.2              | 1.04 |
| <b>u</b> 0   | $Ce^{3+}$                 | 898.4              | 1.04 |
| $\mathbf{V}$ | $Ce^{4+}$                 | 882.2              | 1.99 |
| u            | $Ce^{4+}$                 | 900.7              | 1.99 |
| v'           | Ce <sup>3+</sup>          | 884.2              | 2.85 |
| u'           | $Ce^{3+}$                 | 902.9              | 2.85 |
| v"           | $Ce^{4+}$                 | 888.3              | 4.63 |
| u''          | $Ce^{4+}$                 | 907.1              | 4.63 |
| v'''         | $Ce^{4+}$                 | 898.1              | 2.14 |
| u'''         | $Ce^{4+}$                 | 916.5              | 2.14 |

**Table S3.** Peak position and full width at half maximum (FWHM) for the fitted 5 sets of spin-orbit split doublets of Ce 3d  $(3d_{5/2} \text{ and } 3d_{3/2})$  for CeO<sub>2</sub> (P)

| Peak       | Origin of cerium | Peak decomp | position |
|------------|------------------|-------------|----------|
| Assignment | contribution     | Peak        | FWMH     |
| v0         | Ce <sup>3+</sup> | 880.1       | 1.60     |
| u0         | Ce <sup>3+</sup> | 898.5       | 1.60     |
| V          | Ce <sup>4+</sup> | 882.0       | 1.77     |
| u          | $Ce^{4+}$        | 900.5       | 1.77     |
| v'         | Ce <sup>3+</sup> | 884.4       | 3.0      |
| u'         | Ce <sup>3+</sup> | 902.9       | 3.0      |
| V''        | Ce <sup>4+</sup> | 888.2       | 4.35     |
| u''        | Ce <sup>4+</sup> | 906.7       | 3.14     |
| v'''       | Ce <sup>4+</sup> | 897.9       | 1.98     |
| u'''       | Ce <sup>4+</sup> | 916.2       | 1.87     |

**Table S4.** Peak position and full width at half maximum (FWHM) for the fitted 5 sets of spin-orbit split doublets of Ce 3d  $(3d_{5/2} \text{ and } 3d_{3/2})$  for CeO<sub>2</sub> (808)

| Peak       | Origin of cerium | Peak decomposition |      |
|------------|------------------|--------------------|------|
| Assignment | contribution     | Peak               | FWMH |
| v0         | Ce <sup>3+</sup> | 880.2              | 1.35 |
| u0         | Ce <sup>3+</sup> | 898.5              | 1.35 |
| v          | $Ce^{4+}$        | 882.1              | 1.78 |
| u          | $Ce^{4+}$        | 900.6              | 1.78 |
| v'         | Ce <sup>3+</sup> | 884.4              | 3.8  |
| u'         | Ce <sup>3+</sup> | 902.7              | 3.8  |
| v''        | $Ce^{4+}$        | 888.6              | 3.74 |
| u''        | $Ce^{4+}$        | 907.1              | 3.74 |
| v'''       | $Ce^{4+}$        | 898.0              | 2.09 |
| u'''       | $Ce^{4+}$        | 916.4              | 2.09 |

**Table S5.** Peak position and full width at half maximum (FWHM) for the fitted 5 sets of spin-orbit splitdoublets of Ce 3d  $(3d_{5/2} \text{ and } 3d_{3/2})$  for CeO2 (BTC)

| Peak       | Origin of cerium | Peak decomp | position |
|------------|------------------|-------------|----------|
| Assignment | contribution     | Peak        | FWMH     |
| v0         | Ce <sup>3+</sup> | 880.5       | 1.5      |
| u0         | Ce <sup>3+</sup> | 898.7       | 1.5      |
| V          | $Ce^{4+}$        | 882.0       | 1.9      |
| u          | Ce <sup>4+</sup> | 900.4       | 1.9      |
| v'         | Ce <sup>3+</sup> | 884.0       | 3.9      |
| u'         | Ce <sup>3+</sup> | 902.0       | 3.9      |
| v"         | Ce <sup>4+</sup> | 888.4       | 3.5      |
| u''        | $Ce^{4+}$        | 907.0       | 3.5      |
| v'''       | Ce <sup>4+</sup> | 897.8       | 2.2      |
| u'''       | Ce <sup>4+</sup> | 916.3       | 2.2      |

**Table S6.** Peak position and full width at half maximum (FWHM) for the fitted 5 sets of spin-orbit splitdoublets of Ce 3d  $(3d_{5/2} \text{ and } 3d_{3/2})$  for CePrOx (BTC)

| Catalanta             | DMC Yield Reaction Conditions       |             | nditions | Def       |
|-----------------------|-------------------------------------|-------------|----------|-----------|
| Catalysts             | $(\mu mol_{DMC}/g_{cat} \cdot min)$ | Temperature | Pressure | Kei.      |
| CePrOx (BTC)          | 5.1                                 | 120 °C      | 10 bar   | This work |
| CePrOx (BTC)          | 3.2                                 | 120 °C      | 5 bar    | This work |
| $Ce_{0.8}Zr_{0.2}O_2$ | 0.9                                 | 120 °C      | 18 bar   | 1         |
| $Ti_{0.04}Ce0{96}O_2$ | 4.5                                 | 140 °C      | 10 bar   | 2         |
| CeO <sub>2</sub>      | 1.8                                 | 140 °C      | 30 bar   | 3         |
| Ce/SBA-15             | 0.6                                 | 130 °C      | 50 bar   | 4         |
| $Y_{0.5}Fe_{0.5}O_x$  | 2.6                                 | 110 °C      | 80 bar   | 5         |
| ZrO <sub>2</sub>      | 2.2                                 | 160 °C      | 48 bar   | 6         |
| $Fe_{0.7}Zr_{0.3}O_y$ | 1.8                                 | 140 °C      | 50 bar   | 7         |

Table S7. Comparison of direct DMC formation rates from CO2 and methanol over various catalysts

## References

- 1. H. J. Hofmann, A. Brandner and P. Claus, *Chemical Engineering & Technology*, 2012, **35**, 2140-2146.
- Z. Fu, Y. Zhong, Y. Yu, L. Long, M. Xiao, D. Han, S. Wang and Y. Meng, *ACS Omega*, 2018, 3, 198-207.
- 3. S. Rojas-Buzo, D. Salusso, A. Jouve, E. Bracciotti, M. Signorile and S. Bordiga, *Applied Catalysis B: Environment and Energy*, 2024, **346**, 123723.
- 4. Y. Pu, K. Xuan, F. Wang, A. Li, N. Zhao and F. Xiao, *RSC Advances*, 2018, **8**, 27216-27226.
- 5. W. Sun, L. Zheng, Y. Wang, W. Jia, W. Guo, Z. Liu, X. Ding, L. Wu and T. Fang, *Journal of CO*<sub>2</sub> Utilization, 2022, **58**, 101912.
- 6. T. Akune, Y. Morita, S. Shirakawa, K. Katagiri and K. Inumaru, *Langmuir*, 2018, 34, 23-29.
- 7. A. Li, Y. Pu, F. Li, J. Luo, N. Zhao and F. Xiao, *Journal of CO*<sub>2</sub> Utilization, 2017, **19**, 33-39.