Supplementary Information for

Electrospun Fe-ZIF Derived Carbon Nanofibers for Boosting Adsorption and Redox Kinetics of Polysulfides in Lithium Sulfur Batteries

Gang-In Lee^a, Deok-Hye Park^a, Ji-Hwan Kim^a, Jae-Sung Jang^a, So-Yeon Ahn^a, Young-Kwang Kim^b,

Jong-Won Lim^a, Ji-Min Hong^a, Se-Jun Park^a, Min-Jae Kim^a, Se-Yeon Jang^a, Kyung-Won Park^{*a}

^a Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea

^b Technical Laboratory, Vitual Lab Inc., 49 Achasan-ro, Seoul 04799, Republic of Korea

*Corresponding author

E-mail address: <u>kwpark@ssu.ac.kr</u> (K. W. Park)

Fig. S1 SEM images and size distributions of (a) PAN fiber and (b) N-CNF.

N-CNF	N		С
	alle states a	And and a second se	
200 μm			

Fig. S2 EDS mapping images of N-CNF.

Fig. S3 SEM images of Fe-ZIF particles.

Fig. S4 EDS mapping images of Fe-ZIF particles.

Fig. S5 XRD pattern of the residue of Fe/N-CNF after TGA analysis.

Fig. S6 (a) CV profiles and (b) Nyquist plots of the cells with Fe/N-CNF, N-CNF, and sulfur as the cathodes after 30 cycles.

Figure S7. Modeling of the structure after the adsorption of Li_2S on graphene.

Fig. S8 (a) CV profiles and (b) Nyquist plots of the cells with Fe/N-CNF, N-CNF, and sulfur as the cathodes after 30 cycles.

Fig. S9 Galvanostatic charge and discharge curves of the cells with (a) sulfur, (b) N-CNF and (c) Fe/N-CNF as the cathodes measured at 0.2 C for 1st, 10th, 50th, 100th, and 200th cycles.

Fig. S10 Galvanostatic charge and discharge curves of the cells with (a) sulfur, (b) N-CNF and (c) Fe/N-CNF as the cathodes measured at different rates 0.2 to 2.0 C.

Fig.S11 Cycle analysis of electrodes with increased (a) sulfur content and (b) sulfur loading for practical application in Li-S batteries (LSBs).

Commiss	Synthesis Methods			
Samples	Electrospinning	In-situ Growth	Properties	Reference
Fe/N-CNF	O (Fe-seed Contained)	O (2-STEP Growth)	 ✓ Using a two-step nucleation- growth process with high surface polarity and exposed active sites enhances strong chemisorption. 	This Work
FeSA-PCNF	0	Х	 ✓ A lightweight, flexible architecture with a hierarchical porous structure. 	1
FeZn-PCNF	0	Х	 A carbon fibrous network prov ideshigh conductivity while en hancingphysical immobilizatio n. 	2
FeSA- NC@CBC	Х	O (Solvoth ermal)	 ✓ A hierarchical porous structure is achieved using bacterial cellulose (BC) for enhanced functionality. 	3
CNF/Co- Co ₉ S ₈ -NC	Х	O (Solvothermal)	 ✓ 3D Hyperfine Carbon Nanofibers Synthesized Using Bacterial Cellulose (BC). 	4
CoS2-SPAN- CNT	O (Ligand Contained)	Ο	✓ SPAN Composite Structures Designed to Suppress Volume Expansion.	5

Table S1. Comparison of studies applying ZIF-based fibers and ZIF-derived CNF in lithium-sulfur batteries (LSBs)

Samples	Surface Area [m ² g ⁻¹]	Average Pore Size [nm]	Reference
B ₄ C@CNF	34.4	3.85	1
SnS ₂ @HCNF	34.2	9.76	2
Fe ₃ C/N-CNF	13.8	-	3
Mn ₃ O ₄ @CNF	40.0	-	4
CNF/rGO	43.8	-	5

Table S2 Comparison of specific surface areas and average pore sizes of CNF structures used in LSBs

Table S3. Comparison of the bond lengths of Fe-S and Li-N in the structure after adsorption

Samples	Fe-S bond length (Å)	Li-N bond length (Å)	Li-C bond length (Å)
Graphene-Li ₂ S	-	-	2.330
NC-Li ₂ S	-	2.122	-
FeNC-Li ₂ S	2.347	2.116	-

Table S4 Comparison of Li-ion diffusion coefficients for Fe/N-CNF/S and N-CNF/S measured from A1, C1, and C2 peaks in CV profiles

Samples ——	$D_{Li+} [cm^2 s^{-1}]$		
	A1	C1	C2
Fe/N-CNF/S	6.26x10 ⁻⁸	1.58x10 ⁻⁸	1.62x10 ⁻⁸
N-CNF/S	3.04x10 ⁻⁸	0.49x10 ⁻⁸	1.54x10 ⁻⁸

Samples	Sulfur Contents [%]	Initial Capacity [mAh g ⁻¹]	Capacity Retention [%]	Reference
Fe/N-CNF/S	70	620 (2.0 C)	78 (200 Cycle)	This work
Co@NCNTs-2	77	578 (0.5 C)	79 (300 Cycle)	6
CoFe@SnCNF/S	85	611 (0.5 C)	76 (200 Cycle)	7
HSAC-S@CF	66	1100 (0.06C)	56 (100 Cycle)	8
OM-Mn ₂ O ₃ /S	60	998 (0.5 C)	56 (250 Cycle)	9

 Table S5. Electrochemical performances of Fe/N-CNF/S cathode with the reported literature

References

- 1. G. Zhao, Q. Chen, L. Wang, T. Yan, H. Li, C. Yuan, J. Mao, X. Feng, D. Sun and L. Zhang, Journal of Materials Chemistry A, 2022, 10, 19893-19902.
- 2. M. Zhang, S. Kong, B. Chen and M. Wu, Batteries, 2023, 10.
- 3. X. Lin, W. Li, V. Nguyen, S. Wang, S. Yang, L. Ma, Y. Du, B. Wang and Z. Fan, Chemical Engineering Journal, 2023, 477.
- 4. N. Gao, X. Shen, Y. Liu, Z. Xu, X. Wang, H. Liu, Y. Ren, S. Chen and Z. Li, Journal of Materials Chemistry A, 2023, 11, 5212-5221.
- 5. A. Abdul Razzaq, X. Yuan, Y. Chen, J. Hu, Q. Mu, Y. Ma, X. Zhao, L. Miao, J.-H. Ahn, Y. Peng and Z. Deng, Journal of Materials Chemistry A, 2020, 8, 1298-1306.
- L. Luo, S. H. Chung, H. Yaghoobnejad Asl and A. Manthiram, *Adv. Mater.*, 2018, 30, 1804149.
- 7. C. Wei, Y. Han, H. Liu, R. Gan, Q. Li, Y. Wang, P. Hu, C. Ma and J. Shi, *Carbon*, 2021, **184**, 1-11.
- 8. J. Li, H. Zhang, L. Luo, H. Li, J. He, H. Zu, L. Liu, H. Liu, F. Wang and J. Song, *J. Mater. Chem. A.*, 2021, **9**, 2205-2213.
- 9. X. Chen, L. Yuan, Z. Hao, X. Liu, J. Xiang, Z. Zhang, Y. Huang and J. Xie, ACS Appl. Mater. Interfaces, 2018, 10, 13406-13412.
- S. Han, X. Pu, X. Li, M. Liu, M. Li, N. Feng, S. Dou and W. Hu, *Electrochim. Acta*, 2017, 241, 406-413.
- 11. A. Raulo, S. Singh, A. Gupta, R. Srivastava and B. Nandan, *Appl. Surf. Sci.*, 2021, **569**, 151054.
- 12. C. Qi, S. Zu, X. Zhu, T. Zhang, L. Li, L. Song, Y. Jin and M. Zhang, *Appl. Surf. Sci.*, 2022, **601**, 154245.
- 13. J. P. Grace, M. Bhar, S. Ghosh and S. K. Martha, J. Alloys Compd., 2023, 969, 172341.
- 14. S. J. Park, Y. J. Choi, H. s. Kim, M. J. Hong, H. Chang, J. Moon, Y. J. Kim, J. Mun and K. J. Kim, *Carbon Energy*, 2024, **6**, e487.