Supporting Information

3D MOF-derived Co-doped Cu3P/NC octahedra embedded in

2D MXene nanosheets for efficient energy conversion

Mengmeng Zhang, Sining Yun*, Tianxiang Yang, Guangping Yang, Menglong Sun, Jiaoe Dang, Zhiguo Wang, Haijiang Yang, Shuangxi Yuan, Asim Arshad, and Ke Wang

Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China

***Corresponding author**

E-mail: [alexsyun1974@aliyun.com;](mailto:alexsyun1974@aliyun.com) yunsining@xauat.edu.cn

Including Experimental section Fig. S1 to S5 Table S1 to S3

Experimental section

Chemicals and materials

Cobalt nitrate hexahydrate (Co(NO3)2·6H2O, Aladdin, 99%), copper nitrate trihydrate (Cu(NO3)2·3H2O, Aladdin, 99%), 1,3,5-Trimesic acid (H3BTC, Aladdin, 98%), Methanol (MeOH, Macklin, 99.5%), polyvinyl pyrrolidone (PVP, Aladdin, >99%), hydrofluoric acid (HF, Aladdin, AR, \geq 40%), sodium hypophosphite (NaH₂PO₂, Macklin, 99%) Lithium iodide (LiI, Alfa, 99.95%), iodine (I2, Alfa, 99.5%), 1-butyl-3-methylimidazolium iodide (Aladdin, >99.0%), 4-tert butylpyridine (TBP, Macklin, >96.0%), guanidine thiocyanate (Macklin, 99.0%), lithium perchlorate (LiClO4, Alfa, 99%), acetonitrile (Aladdin, 99.99%), chloroplatinic acid hexahydrate (H2PtCl6·6H2O, Aladdin, Pt≥37.5%), and N719 dye (Solaronix SA) were commercially available and utilized without further purification. The MAX ($Ti₃AlC₂$) powders (400 mesh) were acquired from Foshan Xinxi Technology Co., Ltd., Guangdong, China.

Materials characterization

Scanning electron microscopy (SEM, ZEISS G500, Germany) and transmission electron microscopy (TEM, FEI TECNAI F20, America) were employed to analyze the micro-morphology of samples. X-ray diffraction (XRD, MDI D/Max 2200, America), Raman spectroscopy (LabRAM HR Evolution, Horiba, France) and N_2 adsorption-desorption measurements (ASAP 2460, America) were utilized to analyze the structural information of samples. The samples were analyzed for chemical bonding and elemental composition using X-ray photoelectron spectrometer (XPS, THERMO ESCALAB 250XI, America).

Electrode preparation

Preparation of HER electrode: The HER electrode was synthesized by mixing 10 mg of the electrocatalyst with a solution composed of 25 μL of Nafion and 975 μL of isopropanol. After 30 minutes of sonication, the catalyst suspension (75 μ L) was uniformly dripped onto the nickel foam (NF) using a pipette gun and naturally dried. Prior to use, the NF was sliced into small pieces measuring 1 cm² \times 2 cm² and soaked in a 2 M HCl solution for 30 min. Subsequently, the NF was rinsed until it reached a neutral pH and then dried at 60 °C. A Pt/C electrode with a weight percentage of 20 wt% was employed in this work for preparation.

Preparation of counter electrode: The powders of MXene, Cu₃P/NC, Cu₃P/NC@MXene, and Co-Cu3P/NC@MXene (120 mg each) were dispersed in 1.2 mL of isopropanol solution. A uniformly dispersed slurry was obtained by ball-milling for 4 h using $ZrO₂$ pearls as the milling medium. Subsequently, the catalyst slurry was sprayed onto a cleaned fluorine-doped tin oxide (FTO) glass substrate. The catalyst-covered FTO glass was subjected to annealing at 400 °C for 30 min under a nitrogen atmosphere to fabricate the intended counter electrode. The reference Pt electrode was fabricated through dip-coating FTO glass with an isopropanol solution of H_2PtCl_6 , then annealing at 500 °C for 30 min.

Assembly of solar cells and symmetrical cells

The TiO₂ photoanode was annealed in air at 500 °C for 30 min, cooled to 120 °C and immersed in N719 dye solution for 24 h in dark. A sandwich-structured DSSC was formed by injecting I/I_3 electrolyte between the counter electrode and the TiO_2 photoanode. The I/I_3 electrolyte consisted of 0.06 M LiI, 0.03 M I2, 0.6 M 1-butyl-3-methylimidazolium iodide, 0.5 M 4-tert-butylpyridine, and 0.1 M guanidine thiocyanate dissolved in acetonitrile, which is also the electrolyte used for $J-V$ testing.^{1, 2} In addition, two identical pair of counter electrodes and $I/\overline{I_3}$ electrolyte were combined to form the symmetrical cell.

Electrochemical and photovoltaic measurements

The cyclic voltammetry (CV) curves of the three-electrode system, consisting of Ag/Ag^+ (reference electrode, RE), Pt electrode (counter electrode, CE) and prepared electrode (working electrode, WE), were measured. The electrolytes for CV testing were prepared by dissolving I_2 (1 mM), LiI (10 mM), and LiClO₄ (0.1 M) in an acetonitrile solution. Tafel polarization and electrochemical impedance spectroscopy (EIS) tests were conducted on the prepared symmetrical dummy cell. EIS testing utilized an AC amplitude of 10 mV over frequencies ranging from 0.1 to 10⁵ Hz. These measurement results were analyzed using Z-view software to create a model that represents an equivalent circuit. Photocurrent density-photovoltage (*J-V*) curves were obtained under 100 MW cm⁻² illumination using a solar simulator (Xe arc lamp, EASISOLAR-50-3A, CROWNTECH, INC., America) and a Keithley 2400 digital source meter. The stability of the prepared catalysts for IRR was assessed via a 50-turn CV testing.

Electrochemical measurements of HER

The electrochemical measurements for HER were conducted in a three-electrode system using a 1 M KOH solution saturated with nitrogen gas. In this system, the prepared MXene, Cu3P/NC, Cu3P/NC@MXene, and Co-Cu3P/NC@MXene electrodes served as WE, with the graphite rod as CE, and an Hg/HgO electrode as RE. Linear scanning voltammetry (LSV) was conducted from -0.8 to -1.4 V. The reversible hydrogen electrode (RHE) was determined by applying the Nernst equation (Eq. 1).

$$
E_{\rm RHE} = E_{\rm Hg/HgO} + 0.059 \times \text{pH} + 0.098 \tag{1}
$$

The Tafel slope is determined by analyzing the corresponding LSV curves using Eq. 2, where *a* represents a constant, *b* represents the Tafel slope, *j* signifies the current density, and *η* indicates the overpotential.

$$
\eta = a + b \log j \tag{2}
$$

The EIS was carried out at an overpotential of 90 mV and within a frequency range spanning from 0.1 to 10⁵ Hz. The electrochemical double-layer capacitance $(C_{\rm d}$) values were obtained by analyzing the CV curves acquired at various scan rates for all materials. The specific C_{dl} values were then derived by plotting Δj against the scan rate slope, where $\Delta j = |j_a-j_b|/2$. Finally, the electrochemically active surface area (ECSA) was computed using Eq. 3.

$$
ECSA = \frac{c_{d1}}{c_s} \tag{3}
$$

where C_s represents the specific capacitance, which was considered to be 40 μ F cm⁻².³

The catalyst's stability for HER was evaluated by analyzing the LSV curve pre- and post-1000 cycles of CV test, as well as through a 30-hour chronopotentiometry (CP) test.

Fig. S1. (a) SEM images of Cu₃P/NC, (b)The illustration is the diameter distribution of Cu₃P/NC.

Fig. S2. XRD patterns of (a) Ti₃AlC₂ and Ti₃C₂T_x MXene and (b) Cu-BTC.

Co-Cu3P/NC@MXene at different scan rates

Fig. S4. (a) XPS survey spectra of Co-Cu3P/NC@MXene after HER stability test. XPS spectrum of (b) C 1s and (c) N 1s for Co-Cu3P/NC@MXene after HER stability test.

Fig. S5. CV curves of (a) Cu₃P/NC@MXene, (b) Cu₃P/NC, and (c) MXene under various scan rates.

Electrocatalysts	Overpotential at 10 mA cm ⁻² (mV)	Tafel slope $(mV dec-1)$	Ref.
$Ti2NTx@MOF-CoP$	112	67.1	$\overline{4}$
Cu ₃ P/CF	173	104	5
CoMoP	172	91	6
Fe-doped MOF CuCoSe	181	59	τ
CuCo ₂ S ₄	158	113	8
$Ti_3C_2@mNiCoP$	127	103	9
P-MoO ₃ FCL MXene/NF	118	105	10
CoP/Mo_2CT_x	78	40	11
P-doped CuCo ₂ O ₄	152	115.8	12
Mo-NiCo@MXene/NF	96	98.34	13
Co-Cu ₃ P/NC@MXene	110	62	This work

Table S1. HER performance between Co-Cu₃P/NC@MXene and the previously reported non-noble metal electrocatalysts in 1 M KOH solution.

Counter electrodes	$J_{\rm sc}$ (mA cm ⁻²)	V_{oc} (V)	FF	PCE (%)
Pt	14.29 ± 0.14	$0.74 + 0.01$	0.67 ± 0.01	7.16 ± 0.12
MXene	12.37 ± 0.24	$0.76 + 0.02$	$0.67 + 0.02$	6.26 ± 0.24
Cu ₃ P/NC	13.60 ± 0.10	0.73 ± 0.01	$0.67 + 0.01$	6.67 ± 0.08
Cu ₃ P/NC@MXene	14.47±0.02	0.76 ± 0.01	0.72 ± 0.01	7.95 ± 0.11
$Co-Cu_3P/NC@MXene$	15.14 ± 0.02	0.76 ± 0.01	0.72 ± 0.01	8.20 ± 0.05

Table S2. Photovoltaic parameters of solar cells based on different counter electrodes.

Table S3. Photovoltaic parameters of solar cells with different CEs in I₃^{-/}I⁻ electrolyte and N719 dye.

Counter electrodes	$J_{\rm sc}$ (mA cm ⁻²)	V_{oc} (V)	FF	PCE(%)	Ref.
NiS@CoNi ₂ S ₄	15.73	0.77	0.65	7.96	14
CoNiTe ₂ /SNTC	16.71	0.76	0.64	8.11	15
$Cu3Mo2O9/3D-AWC$	15.71	0.74	0.63	7.33	16
$CuTa_{10}O_{26}/SC$	15.19	0.68	0.63	6.53	17
CuCo ₂ O ₄ @RGO	12.11	0.79	0.64	6.11	18
Ni ₁₂ P ₅ /C	13.88	0.76	0.75	7.94	19
rGO-NCS	16.40	0.75	0.66	8.15	20
$CESM$ -CuIn S_2	12.48	0.78	0.60	5.79	21
$Cu/P25-Cu/Pt$	17.91	0.72	0.58	7.62	22
CoP ₃	13.91	0.82	0.60	6.84	23
Co-Cu ₃ P/NC@MXene	15.18	0.76	0.71	8.18	This work

Reference

- 1. J. Dang, S. Yun, Y. Zhang, J. Yang, Z. Liu, C. Dang, Y. Wang and Y. Deng, *Chem. Eng. J.*, 2022, **449**, 137854.
- 2. M. Sun, S. Yun, J. Shi, Y. Zhang, A. Arshad, J. Dang, L. Zhang, X. Wang and Z. Liu, *Small*, 2021, **17**, 2102300.
- 3. C. C. L. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, *J. Am. Chem. Soc.*, 2013, **135**, 16977-16987.
- 4. H. Zong, R. Qi, K. Yu and Z. Zhu, *Electrochim. Acta*, 2021, **393**, 139068.
- 5. J. Chen, X. Li, B. Ma, X. Zhao and Y. Chen, *Nano Res.*, 2021, **15**, 2935-2942.
- 6. X. Huang, X. Xu, X. Luan and D. Cheng, *Nano Energy*, 2020, **68**, 104332.
- 7. S.-H. Chae, A. Muthurasu, T. Kim, J. S. Kim, M.-S. Khil, M. Lee, H. Kim, J. Y. Lee and H. Y. Kim, *Appl. Catal. B: Environ.*, 2021, **293**, 120209.
- 8. C. Zequine, S. Bhoyate, F. Wang, X. Li, K. Siam, P. K. Kahol and R. K. Gupta, *J. Alloys Compd.*, 2019, **784**, 1-7.
- 9. Q. Yue, J. Sun, S. Chen, Y. Zhou, H. Li, Y. Chen, R. Zhang, G. Wei and Y. Kang, *ACS Appl. Mater. Interfaces*, 2020, **12**, 18570-18577.
- 10. M. Li, R. Sun, Y. Li, J. Jiang, W. Xu, H. Cong and S. Han, *Chem. Eng. J.*, 2022, **431**, 133941.
- 11. S. Liu, Z. Lin, R. Wan, Y. Liu, Z. Liu, S. Zhang, X. Zhang, Z. Tang, X. Lu and Y. Tian, *J. Mater. Chem. A*, 2021, **9**, 21259-21269.
- 12. S. Tan, Y. Ji, F. Ren, F. Chen and W. Ouyang, *Int. J. Hydrog. Energy*, 2022, **47**, 9248-9260.
- 13. J. Jiang, R. Sun, X. Huang, W. Xu, S. Zhou, Y. Wei, S. Han and Y. Li, *Compos. B. Eng.*, 2023, **263**, 110834.
- 14. J. Dang, S. Yun, Y. Zhang, G. Yang, J. Yang, D. Qiao and T. Yang, *J. Colloid Interface Sci.*, 2023, **630**, 91-105.
- 15. Y. Deng, S. Yun, J. Dang, Y. Zhang, C. Dang, Y. Wang, Z. Liu and Z. Gao, *J. Colloid Interface Sci.*, 2022, **624**, 650-669.
- 16. F. Han, S. Yun, J. Shi, Y. Zhang, Y. Si, C. Wang, N. Zafar, J. Li and X. Qiao, *Appl. Catal. B: Environ.*, 2020, **273**, 119004.
- 17. S. Yun, X. Zhou, Y. Zhang, C. Wang and Y. Hou, *Electrochim. Acta*, 2019, **309**, 371-381.
- 18. K. Xiong, W. Nie, P. Yu, L. Zhu and X. Xiao, *Materials Letters*, 2017, **204**, 69-72.
- 19. M. Chen, L.-L. Shao, Z.-Y. Yuan, Q.-S. Jing, K.-J. Huang, Z.-Y. Huang, X.-H. Zhao and G.-D. Zou, *ACS Appl. Mater. Interfaces*, 2017, **9**, 17949-17960.
- 20. K. S. Anuratha, M. Ramaprakash, S. K. Panda and S. Mohan, *Ceram. Int.*, 2017, **43**, 10174-10182.
- 21. L. Wang, J. He, M. Zhou, S. Zhao, Q. Wang and B. Ding, *J. Power Sources*, 2016, **315**, 79-85.
- 22. Y. Jiang, Y. Yang, L. Qiang, T. Ye, L. Li, T. Su and R. Fan, *J. Power Sources*, 2016, **327**, 465-473.
- 23. X. Gao, G. Yue, R. Cheng, T. Wu, L. Fan, Y. Gao and F. Tan, *Sol. Energy*, 2020, **208**, 289-295.