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Rotating disk electrode (RDE) measurements:

In RDE measurements, electrode materials were cathodically scanned from 0.2 to -0.8 V (vs. 

SCE) in 0.1M KOH at a scan rate of 10 mV s-1 with different rotation speeds from 400 to 3000 

rpm. Koutecky-Levich plots are derived from CLSV data measured from the RDE experiment 

and calculate the electron transferred number based on the following K-L equation,
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Where, j = current density

jl & jk = diffusion- and kinetic-limiting current densities

ω = angular velocity
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F = Faraday constant

C0 = bulk concentration of O2

D0 = diffusion coefficient of O2 in electrolyte

N = number of electrons transferred

v = kinematic viscosity of the electrolyte.

Rotating ring-disk electrode (RRDE) measurements:

In RRDE measurements, electrode material was cathodically scanned from 0.2 to -0.8 V (vs. 

SCE) at the scan rate of 10 mV s-1 in 0.1M KOH, keeping ring potential constant at 1.5 V vs. 

RHE. The number of electrons transferred (n) and peroxide yield (%) were calculated by using 

the following equations,

H2O2 (%) = 200
×  

𝐼𝑟 𝑁

𝐼𝑑 + 𝐼𝑟 𝑁

n = 4  ×

𝐼𝑑

𝐼𝑑 + 𝐼𝑟 𝑁

Where,   = disk current𝐼𝑑

 = ring current𝐼𝑟

N = current collection efficiency of the Pt ring (37%)

Calculation of the Battery Performances:

The specific capacity of the assembled zinc-air batteries was calculated from the equation 

below:

Specific capacity = I × t/mZn
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The energy can be calculated from the equation below:

Energy density = I × t × V/mZn

Where I denotes current, t denotes the service hours, V denotes the average discharge 

voltage, and mZn denotes the weight of consumed zinc.

Fig. S1. The color change of the reaction mixture (a) before and (b) after adding the Pt 

precursor to synthesize PtNP-ZnO@CQDs.

Fig. S2 (a) The PXRD pattern of CQDs. (b) (b) The comparison of the XRD pattern of ZnO, 

pristine PtNP-ZnO@CQDs, and PtNP-ZnO@CQDs after soaking in 1 M KOH for 50 h.
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Table. S1. BET isotherm data of Pt-ZnO/CQDs nanocomposite

Parameter Values

Specific surface area (m2/g) 81.565 m2/g

Mean pore diameter (nm) 6.9365 nm

Total pore volume (cm3/g) 0.2029 cm3/g

Fig. S3 (a) Survey spectra of Pt-ZnO/CQDs nanocomposite and (b) O1s spectra of Pt-

ZnO/CQDs nanocomposite.
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Table S2: Elemental analysis with weight and atomic percentages of different elements from 

the EDX study 

Element Line 
Type

Apparent 
Concentration

k Ratio Wt% Wt% 
Sigma

Atomic %

C K series 146.92 1.4692 69.23 0.10 86.94
O K series 22.72 0.07652 9.15 0.08 8.63
Zn K series 80.82 0.80610 17.97 0.08 4.14
Pt M series 15.89 0.15894 3.65 0.04 0.29
Total: 100.00 100.00

Table S3: The comparison of elemental analysis using XPS, EDX, and AAS studies.

Elements Wt% by XPS Wt% by EDX Wt% by AAS

Pt 3.16 3.65 4.75 

Zn 15.8 17.97 19.22 
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Fig. S4 (a) Cycle stability performance of PtNP-ZnO@CQDs nanocomposite electrocatalyst. 

(b) CV of different molar concentrations of methanol into 1M of KOH electrolyte solution. (c) 

Laboratory setup for CO striping experiment. (d) CV of CO striping on PtNP-ZnO@CQDs 

modified glassy carbon electrode.

Fig. S5 Core level XPS spectra of Pt4f in PtNP-ZnO@CQDs and comparison with commercial 

Pt/C.
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Table S4. Comparison of electrocatalytic OER activity of PtNP-ZnO@CQDs with recently 

reported catalysts. 

Electrocatalysts Synthesis 

method

Electrolyte

KOH (M)

Overpotential 

(mV)

@ 10 mA/cm2

Tafel 

slope 

(mV/dec)

Ref.

ZnCo2O4 nanosheets 

with oxygen 

vacancies

Hydrothermal 

and NaBH4 

reduction

0.1 324 56.9 1

V-Co-Fe-343 hydrothermal 1.0 307 36.0 2

SmBa0.5Sr0.5Co2O6-δ 

(SBSC-E(800))

hydrothermal 0.1 370 46.0 3

ZnO@NiFe core-

shell nanorods

electrodeposition 0.1 380 105 4

Co0.54Fe0.46(OOH) electrodeposition 1.0 370 26 5

Au/NiFe LDH hydrothermal 1.0 237 36 6

(Co,Ni)Se2@NiFe-

LDH

solvothermal 1.0 332 75 7

Co2P/Co4N/CNTs Pyrolysis 1.0 389 110 8

PtNP-ZnO@CQDs one-pot 

hydrothermal 

1.0 355 61.7 This 

Work
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Calculation of Faradic Efficiency:

The chronoamperometry study of Pt-ZnO/CQDs was conducted at a voltage of 1.6 V (RHE) 

for 30 min (in Fig. S6a). Therefore, 

The charge passed (area under the curve) = 36.246 Coulomb

Again, 36.246 Coulomb = (36.246/96485) mole electron

Here, one oxygen molecule was evolved by 4 electrons pathway, so the theoretical oxygen 

production = (36.246/(96485×4)) mole

= (36.246×22400)/(96485×4) mL (1 mole gas = 22400 mL at STP)

= 2.10 mL

Using the water displacement method, the amount of oxygen evolved was collected and 

measured in a centrifuge tube (in Fig. S6b). The Faradic Efficiency (FE) at 1.6 V (RHE) was 

calculated using the following equation.

FE = (amount of O2 evolved (mL) × 100) / Theoretical yield of O2 (mL)

FE = (1.95× 100)/2.10

FE = 93 %
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Fig. S6. (a) The chronoamperometry plot. (b) Set-up for measuring the evolved oxygen by self-

made instrument and the amount of oxygen evolved after 30 min during chronoamperometry. 
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Fig. S7. The CV curves were obtained in the non-Faradic region and corresponding Cdl 

calculation for (a-b) PtNP-ZnO@CQDs, (c-d) ZnO, and (e-f) CQDs at different scan rates from 

10 to 50 mV/s. 
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Table S5. Compared values of ECSA and RCT for PtNP-ZnO@CQDs with the intermediate 

ZnO and CQDs. 

Catalysts Cdl (mF) ECSA (cm2) RCT (Ω)

PtNP-ZnO@CQDs 4.1 68.3 23.1

ZnO 0.49 8.2 28.7

CQDs 0.16 2.6 34.3

Fig. S8 (a) CV study for oxygen reduction for PtNP-ZnO@CQDs catalyst. No reduction was 

shown in argon-saturated electrolytes. (b) CLSV plot of PtNP-ZnO@CQDs during ORR in the 

presence and absence of light irradiation. 
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Table S6. Comparison of electrocatalytic ORR activity of PtNP-ZnO@CQDs with recently 

reported Pt-based catalysts. 

Electrocatalysts Synthesis 
method

Pt-
content 
(wt%)

Limiting 
current 
density

(mA cm-1)

Mass 
Activity 

A (A 
mgpt

-1)

E1/2 
(V)

Reference

Pt&CoO/N-doped 
carbon (NC)

2 steps pyrolysis ~2 ~5.3 - 0.842 9

Pt&Fe2O3/N-doped 
carbon (NC)

2 steps pyrolysis ~2 ~5.4 - 0.862 9

Pt/Ta/SnO2 Microwave 7 ~5.5 0.465 ~0.9 10
Pt/TiNbOx (Ti/Nb = 

1:6.6)/CSCNT 
Photo-

deposition
~20 ~5.8 1.06 ~0.9 11

PtNi/Mn2O3-NiO Microwave 8.68 4.32 - ~0.8 12
PtNi/Mn2O3-TiO2 Microwave 8.23 2.02 - ~0.7 12

PtNi hollow 
nanochain

galvanic 
replacement 

77 ~5.5 0.34 0.856 13

PtNi nanoporous 
nanowires

Eutectic reaction 78.74 ~6 0.333 0.898 14

 PtZn intermetallic 
nanocrystals

Atomic layer 
deposition

66.1 ~6.1 0.27 0.887 15

Pt3Co/Co3ZnC@Co-
N-doped Carbon

two-step 
pyrolysis

11.95 ~5.1 0.156 0.9 16

PtFe nanowires Electrochemical 
etching

~20 ~6 1.10 0.959 17

1 nm PtFeCo 
nanowire

solvothermal ~20 ~5.5 0.57 ~0.85 18

PtxCo1–x core–shell 
catalysts

Impregnation 
and annealing 

- ~6 0.15 0.95 19

Pt2Pd porous alloy molten-alkali 
mechanochemic

al 

- ~6 1.38 0.9 20

Pd45Pt44Ni11 Spiral one-pot 
hydrothermal 

- ~5.7 1.86 0.94 21

PtNP-ZnO@CQDs one-pot 
hydrothermal 

5.4 5.0 0.426 0.95 This 
Work



S13

Fig. S9 (a) ORR activity of various PtNP-ZnO@CQDs catalysts. (b) Summary of the 

amount of metal present in the catalyst.

Fig. S10 Image of degradation of zinc plate during ZAB operation.
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