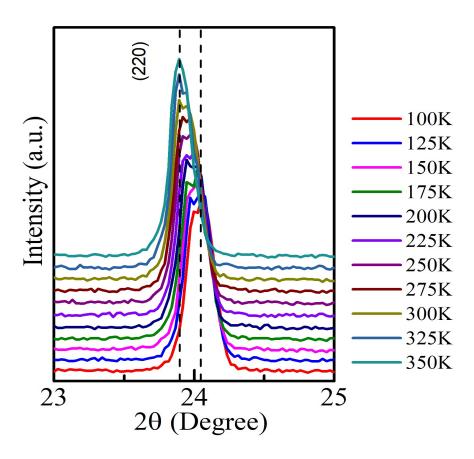
Supplementary Information Local Structural Distortions and Thermochromic Properties in Cs₂NaFeCl₆

Halide Double Perovskite

Bikash Ranjan Sahoo,^a Venkatesha R. Hathwar,^b U.P. Deshpande,^c and Preeti A. Bhobe*,^a


^aDepartment of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India

^bDepartment of Physics, Goa University, Taleigao Plateau, Goa, 403206, India

^eUGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore, 452017, India

*E-mail: pbhobe@iiti.ac.in

S1: Shifting of (220) peak position in temperature dependent XRD spectra

Fig. S1. Shifting of (220) peak with temperature starting from 100K to 350K. The apparent peak-splitting seen here is an artifact from the $K\alpha 1$ and $K\alpha 2$ X-ray wavelengths of Cu source, used for recording the XRD profile.

S2: Room temperature Raman spectra with various thermal cycles

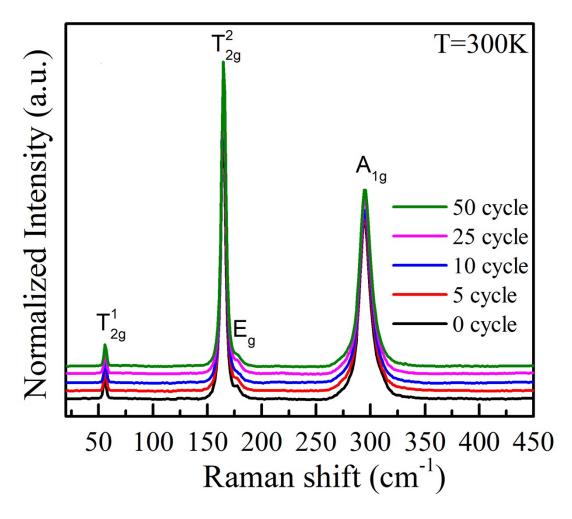
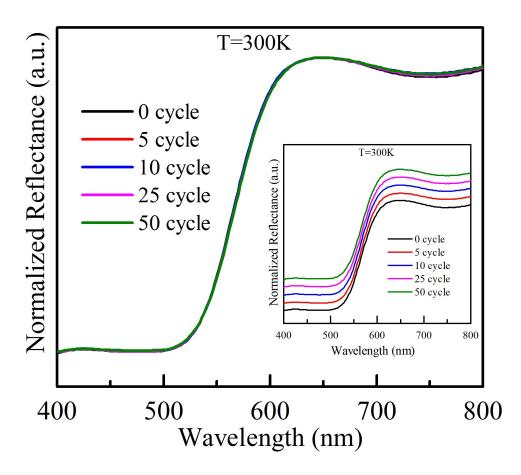



Fig. S2. Room temperature Raman spectra show no change in the Raman peak positions after several thermal cycles.

S3: Room temperature diffuse reflectance spectra with various thermal cycles

Fig. S3. Room temperature UV-vis diffuse reflectance spectra with different thermal cycles depicts that the reflectance spectra remain unchanged. For clarity, the spectra are re-plotted in the inset with a constant upward shift in the y-axis of each spectra.