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S1. Electrode preparation

All electrocatalytic experiments were conducted with a PARSTAT MC (PMC-200) 

workstation at a sweep rate of 10 mV/s, utilizing a standard three-electrode setup in 1 M KOH 

electrolyte for the HER, OER and overall water splitting tests at room temperature. Working 

electrodes were prepared by homogenizing active materials (MFO, MFO/MXene, MFO/VS2, and 

MFO/MXene/VS2) with poly(vinylidene fluoride) and carbon black in an 80:10:10 ratio, 

respectively, using N-methyl-2-pyrrolidone as the solvent. This slurry was coated onto nickel foam 

(NF) substrates and thermally treated at 100 °C for 12 hours to remove contaminants and solvent, 

achieving a consistent loading of 3 mg of active material. In the HER and OER experiments, the 

active materials functioned as the working electrodes, with a Hg/HgO electrode as the reference 

and a graphite rod as the counter electrode in an alkaline medium. Electrochemical impedance 

spectroscopy (EIS) was performed over a frequency range of 10 mHz to 100 kHz with a 10 mV 

potential amplitude. Water-splitting reactions were evaluated in device configurations of 

MFO/MXene/VS2‖MFO/MXene/VS2 and Pt/C‖RuO2, with EIS conducted in a 1 M KOH solution. 

iR correction for ohmic resistance losses was applied during polarization studies, and electrode 

potentials were referenced to the reversible hydrogen electrode (RHE) using the equation: 

E(RHE)HgO = E(vs. Hg/HgO) + E0 (Hg/HgO) + 0.0592 × pH.

S2. Characterization Techniques

XRD patterns were obtained using a Rigaku X-ray diffractometer with Cu-Kα radiation 

(0.154 nm) at 40 kV and 40 mA, scanning from 5-80° (2θ). The morphological properties and 

elemental mapping/analysis of the prepared nanostructures were characterized using field-

emission scanning electron microscopy (HITACHI S-4700) and transmission electron microscopy 



(JEOL JEM-2100F, 200 kV). Raman spectroscopy measurements were conducted at room 

temperature with a Renishaw Invia RE04, employing a 512 nm Ar laser with a 30-second exposure 

time. XPS measurements were performed using an Ulvac PHI X-tool spectrometer with Al Kα X-

ray radiation (1486.6 eV).



Figure S1. Field emission scanning electron microscopy (FESEM) images showing the 

morphological characteristics of (a-b) MXene and (c-d) VS2.



Figure S2. (a) FESEM mapping image of MFO/MXene/VS2 hybrid composite and (b-h) their 

elemental mapping images ((b) Mg; (c) Fe; (d) O; (e) Ti; (f) C; (g) V and (g) S).



Figure S3. (a) Energy dispersive X-ray spectroscopy (EDS) pattern and (b) the composition of 

MFO/MXene/VS2 hybrid.



Figure S4. X-ray photoelectron spectroscopy (XPS) survey profile of the MFO/MXene/VS2 

hybrid



Figure S5. Linear sweep voltammetry (LSV) curves of MFO/MXene/VS2 hybrid composite 

before and after 24-h working operation in 1 M KOH electrolyte solution.



Figure S6. High-resolution X-ray photoelectron spectroscopy (XPS) profiles after 24-h overall 

water splitting process: (a) survey scan, (b) Mg 1s, (c) Fe 2p, (d) O 1s, (e) Ti 2p, (f) C 1s, (g) V 

2p, and (h) S 2p regions of MFO/MXene/VS2 hybrid composites.



Table S1. HER catalytic performances of the TMDs and MXene-based electrocatalysts

Electrocatalyst Electrolyte η (mV) Synthesis 
Method Morphology Tafel Slope 

(mV·dec-1) Ref

MgFeO3@MXene@VS2 1M KOH 34 @ 10 mA/cm2 Hydrothermal 
synthesis

Nano-cubes 
integrated 

hybrid 
nanosheets

62 This 
work

FeNi@MXene 
(Mo2TiC2Tx)

1M KOH 160@ 10 mA/cm2 Solvothermal 
reaction

FeS2 
nanoparticles 
anchored on 
nanosheets

103.46 1

MoS2@Mo2CTx 0.5M H2SO4 176@10 mA/cm2 Etching + 
Hydrothermal 2D organ 207 2

Co-MoS2@Mo2CTx 1M KOH 112@10
mA/cm

Etching + Tube 
furnace

bulk 
morphology 82 3

NiFe-LDH/MXene-RGO 1M KOH 362@10 mA/cm2 Etching + 
Hydrothermal

3D porous 
skeletons 100 4

WS2/W2C 
heterostructure 0.5 M H2SO4

126@ 10
mA/cm2 CVD Nano-sheet 68 5

MoS2/Ti3C2-MXene@C 0.5 M H2SO4
135@ 10
mA/cm2

Etching + Tube 
furnace

Flower+ 3D 
porous 45 6

WS2/Ti3C2 0.5 M H2SO4
150@ 10
mA/cm2

Etching + 
Hydrothermal

accordion- 
multilayer+
nanosheets

62 7

MoS2/MXene
heterostructures 0.5 M H2SO4

280@ 10
mA/cm2

Etching + 
Hydrothermal

accordion- 
multilayer+
coarse and 

uneven

68 8

MoO2/α-Mo2C 
heterojunction

0.5 M H2SO4 and 
1.0 M KOH

152 & -100@ 10 
mA/cm2 CVD

core-shell
structure 65 & 50

9

Ti2NTx@MOF-CoP 1M KOH 112@10 mA/cm2 freeze-drying+ 
tube furnace

cubic-like
layered 
ultrathin

67.1 10

NiSe2/Ti3C2Tx hybrid 0.5 M H2SO4
200 mV @10 mA g-

1
Etching + 

Hydrothermal
Octahedral 

structure 37.7 11

MoS2/
Mo2C-NCNTs 0.5 M H2SO4 145@ 10 mA/cm2 Etching + 

Hydrothermal
Hierarchical1D 
nanostructure 69 12

WS2–Ti3C2Tx 0.5 M H2SO4 66@ 10 mA/cm2 Etching + 
Hydrothermal

wrinkled 
nanosheets 46.7 13

Mo2C Nanoparticles/ 
Graphitic CC 0.5 M H2SO4 200@ 10 mA/cm2 CVD

Nanoparticles
porous 

nanofibers
62.6 14

MoP/Mo2C@C 0.5 M H2SO4 89@ 10 mA/cm2 Tube furnace Nanoparticles 45 15

V-Ti4N3Tx 0.5 M H2SO4 330 @ 10 mA/cm2 oxygen-assisted 
molten salt

multilayer 
flakes 190 16

BNNS@Ti3C2 0.5M H2SO4 52@10 mA/cm ball-milling+ tube 
furnace

multilayer 
broken flakes 39 17

Ni/β-Mo2C 0.5 M H2SO4 155 @ 10 mA/cm2 tube furnace irregular 
shaped 79 18



Table S2. OER catalytic performances of the TMDs and MXene-based electrocatalysts

Electrocatalyst Electrolyte η (mV)
Synthesis 

Method
Morphology

Tafel Slope 

(mV·dec-1)
Ref

CoNiO2@MoS2 1M KOH 220 @ 10 mA/cm2 Hydrothermal 
synthesis

Nano-cubes 
integrated 

hybrid 
nanosheets

44 This 
work

FeNi@MXene 
(Mo2TiC2Tx)

1M KOH 190@ 10 mA/cm2 Solvothermal 
reaction

FeS2 
nanoparticles 
anchored on 
nanosheets

42.78 1

Ti2NTx@MOF-CoP 1M KOH 241@50 mA/cm freeze-drying+ 
tube furnace

cubic-like
layered 
ultrathin

96.7 10

FeNi-LDH/Ti3C2-
MXene 1M KOH 250 @ 10 mA/cm2 Etching + freeze-

drying
3D porous 

network 42 19

CoP/Mo2CTx 1M KOH 260@10 mA/cm Etching + tube 
furnace

accordion- 
multilayer+
nanosheets

51 20

NiFeP/MXene 1M KOH 286@50 mA/cm Etching + 
Hydrothermal

3D laminar 
structures 35 21

Ti3C2Tx/TiO2/NiFeCo-
LDH 1M KOH 155 @ 10 mA/cm2 Etching + 

Hydrothermal

Accordion +
spindle like 
morphology

98.4 22

NiFe LDH/Ti3C2Tx/NF 1M KOH 200@10 mA/cm Etching + 
Hydrothermal

Hollow petal 
shape 

structures
64.2 23

CoFe-LDH on MXene 1M KOH 319 @ 10 mA/cm2 Etching + 
Hydrothermal

Accordion+
densely 

packed arrays
50 24

CoS2@MXene 1M KOH 150@ 10 mA/cm2 Etching + freeze-
drying

NWs 
anchored on 

MXene
92 25

FeS2@MXene 1M KOH 240@ 10 mA/cm2
Etching + 

solvothermal 
reaction

nanoparticles 
anchored on 

MXene
58.7 26

CoNi-ZIF-
67@Ti3C2Tx 1M KOH 275@ 10 mA/cm2 Etching + 

chemical reaction

rhombic 
dodecahedral 
structure on 

MXene

65.1 27

MWCNT/V2CTx 1M KOH 469@ 10 mA/cm2 Etching + 
sonication

MWCNTs on 
accordion-

like structure
77 28

Fe3O4/Ti3C2Tx 1M KOH 290@ 10 mA/cm2 Etching + 
Hydrothermal

sparsely and 
unevenly 

nanoplates 
grown on 

MXene

65.1 29

Co-CoO/Ti3C2- 
MXene/NF 1M KOH 271@10 mA/cm Etching + vacuum 

tube furnace

Co-CoO 
nanoplates on 
thin MXene 
nanosheets

47 30

CoP@MXene 1M KOH 146@ 10 mA/cm2 Etching + 
Hydrothermal

1D CoP 
nanorods on 

MXene 
nanosheets

32.5 31



NiSe2@MoS2 1 M KOH 267 @ 10 mA/cm2

electrochemical 
deposition + 
hydrothermal 

synthesis

Disorder 
nanograin 85 32

Co3+–Cr2CTx 1M KOH 420@ 10 mA/cm2
E-

etching  method
3D 

polydisperse 
composites

- 33
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