Supporting information

Synergistic Coupling of CuNi Alloy with CoFe LDH Heterostructure on Nickel Foam toward High-Efficiency Overall Water Splitting

Dan Wang^a, Yuan Chu^a, Youzheng Wu^b, Mengkang Zhu^a, Lin Pan^a, Ruopeng Li^b,

Yukai Chen^a, Wenchang Wang^{a,c}, Naotoshi Mitsuzaki^d, Zhidong Chen^{a*}

a Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China

^b MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China

^c Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou, Jiangsu, 213032, China

^d Qualtec Co., Ltd, Osaka, 590-0906, Japan

*E-mail: zdchen@cczu.edu.cn

Experimental Section

Material characterizations

The morphologies of all samples were detected via scanning electron microscopy (SEM, JEOL-JSM 6360LA) and transmission electron microscopy (TEM, JEOL-JEM 2100 F). The lattice parameters were originated from (X-ray diffraction XRD) (Bruker D8 Advance) and high-resolution transmission electron microscopy (HRTEM). The chemical composition of the sample was examined by X-ray photoelectron spectroscopy (XPS, PHI-Vesoprobe 5000 Ш).

Electrochemical measurements

The electrochemical experiments were performed on a CHI660E electrochemical workstation equipped with a three-electrode configuration in 1.0 M KOH or 1.0 M KOH + seawater. In the three-electrode system, the graphite, the Hg/HgO electrode, and the prepared sample $(1 \times 1$ cm²) are served as the counter, reference, and working electrode, respectively. For comparison, the Pt (a) NF and RuO₂ (a) NF were prepared. Specifically, 5 mg of Pt/C (or $RuO₂$) was dispersed in mixed solution containing 240 µL ethanol and 10 µL Nafion. The above solution was then ultrasonicated for 30 min to form a homogenous ink. Finally, 50 µL of ink was loaded on the pretreated NF to control the mass loading to be 1 mg cm⁻², followed by drying in vacuum.

Before the linear sweep voltammetry (LSV) test, the electrodes were activated by cyclic voltammetry (CV) with a sweep rate of 0.1 V s^{-1} . The LSV curves of OER and HER were recorded at a scan rate of 5 mV s^{-1} . All potentials were converted to a reversible hydrogen electrode (RHE) by the following formula: $E_{RHE} = E_{Hg/HgO} + 0.059$ $pH + 0.098$. The electrochemical impedance spectroscopy (EIS) was measured in the frequency range of $0.01 \sim 100$ kHz with an amplitude of 5 mV. The double-layer capacitance (C_{d}) was determined by CV at various scan rates (20, 40, 60, 80, 100 and 120 mV s⁻¹) in the non-Faradaic region. The stability of the samples was performed by chronopotentiometry and the multicurrent step method. All the curves displayed in this work were corrected against the 95% iR correction.

The turnover frequency (TOF) value can be evaluated with the following equation:

$$
TOF = \frac{I}{z n F}
$$

Here, I, F, z, and n represent the current (A) , Faraday constant (96485 C mol⁻¹), the number of electrons transferred during HER $(z=2)$ or OER $(z=4)$, and active site density (mol) during HER or OER in 1 M KOH, respectively. Referring to previous studies (Adv. Mater. 2022, 34, 2203615), CV curves were performed in 1 M PBS electrolyte (pH = 7) with a scan rate of 50 mV s⁻¹at a potential range of -0.2 to 0.6 V vs. RHE to measure the integrated charge (Q). The number of active sites (n) can be estimated according to the following formula:

$$
n=\frac{Q}{zF}
$$

Here F, z and Q represent Faraday constant, the number of electrons transferred during HER $(z=2)$ or OER $(z=4)$, and the integrated charge from the CV curve, respectively.

DFT calculations

First-principles calculations are performed by vienna ab initio simulation package (VASP)[1-2] . The generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) is used to describe the exchange-correlation functional^[3]. To accurately describe the dispersion interactions in our simulations, the DFT-D3 method was employed^[4]. The cut-off energy for the plane wave basis is set to 500 eV and a $3\times3\times1$ Monkhorst-pack mesh is employed. All models in this work are with vacuum layers of 15 Å. The top two layers of atoms were fully relaxed (atomic position) up to 10^{-4} eV/Å force minimization and max force of 0.05 eV/Å. The DFT+U method was used to calculate the electronic properties of Fe, Co, Ni and Cu with U of 3.3, 3.4, 3.4 and 3.4 eV^[5].

[1] G. Kresse, J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science, 1996, 6,15-50.

[2] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B 1999, 59, 1758-1775.

[3] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple,

Physical Review Letters, 1996, 77 (18), 3865-3868.

[4] S. Grimme, J. Antony, S. Ehrlich, and S. Krieg, A Consistent and Accurate ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. The Journal of Chemical Physics, 2010, 132, 154104.

[5] V. I. Anisimov, Zaanen, Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I, Physical Review. B, Condensed matter 1991, 44, 943-954.

Figure S1 SEM images of (a) CuNi@NF, (b) CoFe LDH@NF, and (c) CuNi/CoFe LDH@NF.

Figure S2 XRD patterns of all samples.

Figure S3 The overall XPS spectra of CuNi/CoFe LDH@NF.

Figure S4 The O1s XPS spectra of CuNi/CoFe LDH@NF and CoFe LDH@NF.

Figure S5 CV curves of (a) CuNi/CoFe LDH@NF, (b) CuNi@NF, and (c) CoFe LDH@NF in the region of 0.515~0.615 V *vs*.RHE in 1.0 M KOH at various scan rates.

Figure S6 CVs of CuNi/CoFe LDH@NF in 1.0 M PBS (pH=7) with a scan rate of 50 $mV s^{-1}$.

Figure S7 SEM image of CuNi/CoFe LDH@NF after HER stability test.

Figure S8 CV curves of (a) CuNi/CoFe LDH@NF, (b) CuNi@NF, and (c) CoFe LDH@NF in the region of 0.915~1.015 V *vs*.RHE in 1.0 M KOH at various scan rates.

Figure S9 SEM image of CuNi/CoFe LDH@NF after OER stability test.

Figure S10 Raman spectra for CuNi/CoFe LDH@NF before and after stability test.

Figure S11 The absorption models of CuNi (111) and intermediates on CuNi (111). (a) CuNi (111), (b) $*OH$, (c) $*O$, (d) $*OH$.

Overpotential (mV)	References	
56	This work	
	Adv. Funct. Mater. 2019, 29 (6),	
	1807976	
	Adv. Funct. Mater. 2021, 31 (1),	
	2006484	
136	ACS Catal. 2020, 10 (1), 412-419	
207	Composites, Part B 2022, 236, 109823	
77 FCN-8P	Inorg. Chem. Front. 2024,	
	11, 3585	
149 $NiFe2O4/CoNi-S$	Int. J. Hydrog. Energy 2021, 46 (12),	
	8557-8566	
111	J. Alloy. Compd. 2020, 820, 153161	
	Inorg. Chem. Front. 2023,	
	10, 2387	
	Inorg. Chem. Front. 2023,	
	10, 1603	
	75 92 113 118	

Table S1 Comparison of HER performance with those of recently reported catalysts in 1 M KOH (10 mA·cm-2).

Electrocatalysts	Overpotential (mV)	Current density $(mA cm-2)$	References
CuNi/CoFe LDH@NF	268	50	<i>This work</i>
CuNi/CoFe LDH@NF	310	100	<i>This work</i>
$Fe-Ni_2P@P-C/CuxS$	330	50	Nano Energy 2021, 84, 105861
NiFe-LDH-Vo@NiCu	309	100	Chem. Eng. J. 2022, 446, 137226
NiCo-LDH-OH	317	10	J. Colloid Interface Sci. 2023, 636,11-20
$Ni3N-CeO2/NF$	341	50	Adv. Funct. Mater. 2023, 33, 2306786
CoNi-LDH/Co@NC	359	100	Electrochim. Acta 2023, 444, 141956
$NiFeP@TiO2-x$	300	100	J. Colloid Interface Sci. 2023, 645, 66-75
$S-CoOx/NF$	370	100	Nano Energy 2020, 71, 104652

Table S2 Comparison of OER performance with those of recently reported catalysts in 1 M KOH.