Supplementary Material

S-Scheme Heterojunction Cs3Bi2Br9/Bi2WO⁶ for Efficient Photocatalytic Cleavage

of C-C Bonds in β-1 Lignin Models

Huating Jiang,^{a, b} Wencai Yang,^a Xiao Lian,^a Minxia Liu,^a Mingxiang Zhu,^a Huili Li,^{a,*} Fang *Zhanga,**

*^a The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China ^b School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China * Corresponding authors: li_huili@shnu.edu.cn; zhangfang@shnu.edu.cn*

1

Table of Contents

1. Experimental Section

1.1 Synthesis of lignin models. Lignin models were prepared according to a procedure described in the literature.(Wu et al., 2021)

 S_1 (10 mmol, 1 eq.) was added into THF/water solvent (50 mL, v/v = 4/1) in a bottle (100 mL). Afterward, NaBH⁴ (12 mmol, 1.2 eq.) was added and the mixture was stirred at room temperature (r. t.) for 2 h. Then, an excess of saturated NH4Cl aqueous solution (30 mL) was added. The crude product was extracted with ethyl acetate (20 mL \times 3). The combined organic extracts were dried over anhydrous $Na₂SO₄$. The solvent was then concentrated in vacuo and the resulting white solid was dried at 45 ^oC for 8 h to obtain the products 1a-1d.

To a stirring suspension of K_2CO_3 (4.4 mmol, 1.1 eq.) in ethanol/acetone (v/v = 1/1, 20 mL) and S_2 (4 mmol, 1 eq.) at r. t. under N₂ atmosphere, a water solution of HCHO (36.5-38.0 wt%, 0.6 mL, 7.3 mmol, 1.8 eq.) was added. After 4 h, the reaction mixture was filtered to remove K_2CO_3 and concentrated in vacuo to get a solid product. The crude product was purified on silica gel to obtain S3.

The synthesized S₃ (10 mmol, 1 eq.) was added into THF/water solvent (50 mL, $v/v = 4/1$) in a bottle (100 mL). Afterward, NaBH⁴ (12 mmol, 1.2 eq.) was added and the system was stirred at room temperature (r. t.) for 2 h. Then, an excess of saturated NH4Cl aqueous solution (30 mL) was added. The crude product was extracted with ethyl acetate (20 mL \times 3). The combined organic extracts were dried over anhydrous $Na₂SO₄$. The solvent was concentrated in vacuo and the obtained white solid was dried at 45^oC for 8 h to obtain the product 1e-1h.

1,2-Diphenylethanol (1a): white solid. ¹H NMR (400 MHz, DMSO-*d6*) δ 7.34-7.30 (m, 4H), 7.29-

1-Phenyl-2-(p-tolyl)ethan-1-ol (1b): white solid. ¹H NMR (400 MHz, DMSO-*d6*) δ 7.30-7.26 (m,

4H), 7.23-7.18 (m, 1H), 7.02 (s, 4H), 5.25 (d, *J* = 4.6 Hz, 1H), 4.72 (ddd, *J* = 7.4, 5.8, 4.6 Hz, 1H), 2.83 (t, *J* = 7.0 Hz, 2H), 2.254(s, 3H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 145.8, 136.0, 134.6, 129.4, 128.4, 127.8, 126.7, 126.0, 73.9,

45.3, 20.7.

1-(4-Methoxyphenyl)-2-phenylethan-1-ol (1c): white solid. ¹H NMR (400 MHz, DMSO-*d6*) δ 7.23-

7.20 (m, 4H), 7.17-7.13 (m, 3H), 6.86-6.83 (m, 2H), 5.20 (d, *J* = 4.6 Hz, 1H), 4.70 (dt, *J* = 7.7, 5.3 Hz, 1H), 3.72 (s, 3H), 2.87 (qd, *J* = 13.4, 6.6 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 158.1, 139.2, 137.7, 129.5, 127.8, 127.2,

125.8, 113.2, 73.4, 55.0, 45.7.

1,2-Bis(4-methoxyphenyl)ethan-1-ol (1d): white solid. ¹H NMR (400 MHz, DMSO-*d6*) δ 7.20-7.12

OH \curvearrowright OMe $(m, 2H)$, 7.09-6.98 (m, 2H), 6.90-6.81 (m, 2H), 6.80-6.73 (m, 2H), 5.14 (d, *J* = 4.5 Hz, 1H), 4.64 (ddd, *J* = 7.4, 5.8, 4.4 Hz, 1H), 3.73 (s, 3H), 3.70 (s, 3H), 2.80 (dd, *J* = 16.1, 6.7 Hz, 2H). ¹³C NMR (101 MHz,

DMSO-*d6*) δ 158.1, 157.4, 137.8, 131.1, 130.4, 127.2, 113.2, 113.2, 73.5, 55.0, 54.9, 44.8.

1,2-Diphenylpropane-1,3-diol (1e): white solid. ¹H NMR (400 MHz, DMSO-*d6*) δ 7.24-7.19 (m, 2H),

7.15 (dd, *J* = 7.6, 5.9 Hz, 5H), 7.10 (dd, *J* = 7.9, 1.8 Hz, 3H), 5.20 (d, *J* = 4.5 Hz, OH 1H), 5.00 (t, *J* = 5.0 Hz, 1H), 4.54 (t, *J* = 5.1 Hz, 1H), 3.72 (ddd, *J* = 10.4, 6.8, 5.2 Hz, 1H), 3.53 (ddd, *J* = 10.4, 6.9, 5.0 Hz, 1H), 2.90 (td, *J* = 6.7, 5.3 Hz, 1H). ¹³C HO^2

NMR (101 MHz, DMSO-*d6*) δ 145.1, 140.48, 129.5, 127.5, 127.3, 126.4, 126.2, 125.8, 72.2, 62.6, 55.7.

1-Phenyl-2-(p-tolyl)propane-1,3-diol (1f): white solid. ¹H NMR (400 MHz, DMSO-*d6*) δ 7.21-7.19 (m, 2H), 7.18-7.12 (m, 3H), 6.97 (s, 4H), 5.17 (d, *J* = 4.5 Hz, 1H), 4.99 (t, *J* = 4.8 Hz, 1H), 4.53 (t, *J* = 5.1 Hz, 1H), 3.71 (ddd, *J* = 10.4, 7.1, 5.4 Hz, 1H), 3.49 (ddd, *J* = 10.4, 6.7, 4.9 Hz, 1H), 2.86 (td, *J* = 6.9, 5.0 Hz, 1H), 2.23 (s, 3H). ¹³C NMR OH HO

(101 MHz, DMSO-*d6*) δ 145.1, 137.2, 134.5, 129.4, 127.9, 127.5, 126.3, 126.2, 72.1, 62.7, 55.3, 20.8.

2-Phenyl-1-(p-tolyl)propane-1,3-diol (1g): white solid. ¹H NMR (400 MHz, DMSO-*d6*) δ 7.20-7.15

 $_{\text{OH}}$ (m, 2H), 7.15-7.09 (m, 3H), 7.07 (d, $J = 8.6$ Hz, 2H), 6.81-6.75 (m, 2H), 5.08 (d, *J* = 4.4 Hz, 1H), 4.92 (t, *J* = 5.1 Hz, 1H), 4.48 (t, *J* = 5.1 Hz, 1H), 3.70 (s, 3H), o^H 3.69-3.64 (m, 1H), 3.56-3.43 (m, 1H), 2.86 (m, J = 6.5 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 157.8, 140.8, 137.0, 129.5, 127.3, 127.3, 125.8, 112.9, 71.9, 62.7, 55.8, 54.9.

1,2-Bis(4-methoxyphenyl)propane-1,3-diol (1h): white solid. ¹H NMR (400 MHz, DMSO-*d6*) δ 7.10-6.97 (m, 4H), 6.81-6.69 (m, 4H), 5.04 (d, *J* = 4.4 Hz, 1H), 4.91 (t, OMe *J* = 4.8 Hz, 1H), 4.47 (t, *J* = 5.1 Hz, 1H), 3.69 (s, 3H), 3.69 (s, 3H), 3.67- 3.61 (m, 1H), 3.47 (dd, *J* = 5.2, 1.6 Hz, 1H), 2.81 (d, *J* = 5.2 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d6*) δ 157.8, 157.5, 137.1, 132.4, 130.3, 127.3, 112.9, 112.8, 71.8, 62.8, OH \curvearrowright OMe H_O MeO

54.9, 54.9, 54.8.

1.2 Emission decays spectra and kinetic analysis.

The emission decay of photocatalyst was studied and the decay curve for the sample was well fitted with double-exponential function $Y_{(t)}$:(Gan et al., 2023)

$$
Y_{(t)} = A_1 \exp\left(-\frac{t}{\tau_1}\right) + A_2 \exp\left(-\frac{t}{\tau_2}\right)
$$
(Equation 1)

The average emission time τ_{avg} of photocatalyst was calculated from **Equation** (2):

$$
\tau_{avg} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A \tau_2}
$$
 (Equation 2)

Where A_1 , A_2 are functional contributions of time-resolved emission decay lifetime τ_1 , τ_2 .

1.3 Calculation method for catalytic tests.

The conversion and yield were determined by HPGC analysis with internal standard of acetophenone. The details can be calculated using the following **Equation 3**:

Conversion (1*a*) =
$$
\left(1 - \frac{R_{(1a)}}{R_{(acetophenone)}} / \frac{S_{(1a)}}{S_{(acetophenone)}}\right) \times 100\%
$$
 (Equation 3)

R(**1a**) and R(acetophenone) are the peak areas of the corresponding compounds in the HPGC of the after reaction, S_(1a) and S_(acetophenone) are the peak areas of the corresponding compounds in the HPGC of the standard samples.

The yield of products (**2a**, **3a**, **4a** and **5a**) were determined by applying the following equations:

$$
Yield (2a - 4a) = \frac{1}{2} \times \left(\frac{R_{(2a - 4a)}}{R_{(acetophenone)}} / \frac{S_{(2a - 4a)}}{S_{(acetophenone)}}\right) \times 100\% (Equation 4)
$$

$$
Yield (5a) = \left(\frac{R_{(5a)}}{R_{(acetophenone)}} / \frac{S_{(5a)}}{S_{(acetophenone)}}\right) \times 100\% (Equation 5)
$$

R(**2a-5a**) and R(acetophenone) are the peak areas of the corresponding compounds in the HPGC of the after reaction, S(**2a-5a**) and S(acetophenone) are the peak areas of the corresponding compounds in the HPGC of the standard samples.

2. Results and Discussion

Fig. S1. (a) AFM image of BWO. (b)The AFM height cutaway view of BWO.

Fig. S2. XRD patterns of the as-prepared samples.

Fig. S3. FTIR spectra of the as-prepared samples.

Fig. S4. Full XPS spectra of pristine CBB, BWO and CBB/BWO (1:2).

Fig. S5. (a) UV-vis DRS of CBB, BWO, and different ratios of composites. (b) Kubelka-Munk plots. (c) Mott-Schottky plots. (d) XPS valence band spectroscopy of CBB and BWO. (e) Band structures of CBB and BWO.

Fig. S6. (a) Electronic band structures of CBB (001) facet. (b) The density of states (DOS) of CBB (001) facet.

Fig. S7. (a) Electronic band structures of BWO (100) facet. (b) The density of states (DOS) of BWO (100) facet.

Fig. S8. (a) Transient photocurrent response and (b) Nyquist plots of CBB, BWO and CBB/BWO (1:2).

Fig. S9. (a) Photoluminescence (PL) spectra and (b) TRPL spectra of CBB, BWO and CBB/BWO (1:2) at emission wavelengths of 385 nm.

^aReaction conditions: 0.10 mmol **1a**, 3.0 mL CH₂Cl₂, 20 mg catalys, 30 W blue LEDs, O₂, 12 h. ^bThe quantification was performed by means of HPGC analysis using acetophenone as an internal standard.

Table S2. Control Experiment. a

^aReaction conditions: 0.10 mmol 1a, 3.0 mL CH₂Cl₂, 20 mg CBB/BWO (1:2), 30 W blue LEDs, O₂, 12 h. ^bThe quantification was performed by means of HPGC analysis using acetophenone as an internal standard.

^aReaction conditions: 0.10 mmol **1a**, 3.0 mL CH₂Cl₂, CBB/BWO (1:2), 30 W blue LEDs, O₂, 12 h. ^bThe quantification was performed by means of HPGC analysis using acetophenone as an internal standard.

Table S4. Catalytic performances of CBB/BWO (1:2) with different solvents. a

^aReaction conditions: 0.10 mmol 1a, 3.0 mL solvent, 20 mg CBB/BWO (1:2), 30 W blue LEDs, O₂, 12 h. ^bThe quantification was performed by means of HPGC analysis using acetophenone as an internal standard.

Table S5. Catalytic performances of CBB/BWO (1:2) with different reaction time.^a

^aReaction conditions: 0.10 mmol **1a**, 3.0 mL CH₂Cl₂, 20 mg CBB/BWO (1:2), 30 W blue LEDs, O_2 . ^bThe quantification was performed by means of HPGC analysis using acetophenone as an internal standard.

Table S6. Catalytic performances of CBB/BWO (1:2) with different reaction atmosphere.^a

^aReaction conditions: 0.10 mmol **1a**, 3.0 mL CH₂Cl₂, 20 mg CBB/BWO (1:2), 30 W blue LEDs, 12 h. ^bThe quantification was performed by means of HPGC analysis using acetophenone as an internal standard.

Fig. S10. Recycling experiment.

Fig. S11. (a) The XRD pattern and (b) TEM of the recycled CBB/BWO (1:2) after 4th catalytic cycle obtained via centrifugation.

Fig. S12. HPLC-MS analysis of DMPO-captured experiments. (a) HPLC spectra of ion (Mw = 311). (b) Fragment information of ion (Mw = 311) at retention time of 1.702 min.

3. NMR Spectra

Fig. S13. ¹H NMR spectrum of 1,2-diphenylethan-1-ol (1a) (DMSO-*d6*, 400 MHz).

Fig. S14. ¹³C NMR spectrum of 1,2-diphenylethan-1-ol (1a) (DMSO- d_6 , 101 MHz).

Fig. S15. ¹H NMR spectrum of 1-phenyl-2-(p-tolyl)ethan-1-ol (1b) (DMSO-*d6*, 400 MHz).

Fig. S16. ¹³C NMR spectrum of 1-phenyl-2-(p-tolyl)ethan-1-ol (1b) (DMSO-*d6*, 101 MHz).

Fig. S17. ¹H NMR spectrum of 1-(4-methoxyphenyl)-2-phenylethan-1-ol (1c) (DMSO-*d6*, 400 MHz).

Fig. S18. ¹³C NMR spectrum of 1-(4-methoxyphenyl)-2-phenylethan-1-ol (1c) (DMSO-*d6*, 101 MHz).

Fig. S19. ¹H NMR spectrum of 1,2-bis(4-methoxyphenyl)ethan-1-ol (1d) (DMSO-*d6*, 400 MHz).

Fig. S20. ¹³C NMR spectrum of 1,2-bis(4-methoxyphenyl)ethan-1-ol (1d) (DMSO-*d6*, 101 MHz).

Fig. S21. ¹H NMR spectrum of 1,2-diphenylpropane-1,3-diol (1e) (DMSO-*d6*, 400 MHz).

Fig. S22. ¹³C NMR spectrum of 1,2-diphenylpropane-1,3-diol (1e) (DMSO-*d6*, 101 MHz).

Fig. S23. ¹H NMR spectrum of 1-phenyl-2-(p-tolyl)propane-1,3-diol (1f) (DMSO-*d6*, 400 MHz).

Fig. S24. ¹³C NMR spectrum of 1-phenyl-2-(p-tolyl)propane-1,3-diol (1f) (DMSO-*d6*, 101 MHz).

Fig. S25. ¹H NMR spectrum of 2-phenyl-1-(p-tolyl)propane-1,3-diol (1g) (DMSO-*d6*, 400 MHz).

Fig. S26. ¹³C NMR spectrum of 2-phenyl-1-(p-tolyl)propane-1,3-diol (1g) (DMSO-*d6*, 101 MHz).

Fig. S27. ¹H NMR spectrum of 1,2-bis(4-methoxyphenyl)propane-1,3-diol (1h) (DMSO-*d6*, 400 MHz).

Fig. S28. ¹³C NMR spectrum of 1,2-bis(4-methoxyphenyl)propane-1,3-diol (1h) (DMSO-*d6*, 101 MHz).

4. References

- Gan, Q.C., Qiao, J., Zhou, C., Ci, R.N., Guo, J.D., Chen, B., Tung, C.H., Wu, L.Z., 2023. Direct N-H activation to generate nitrogen radical for arylamine synthesis via quantum dots photocatalysis. Angew. Chem. Int. Ed. 62(17), e202218391. <https://doi.org/10.1002/anie.202218391>.
- Wu, X., Lin, J., Zhang, H., Xie, S., Zhang, Q., Sels, B.F., Wang, Y., 2021. Z-scheme nanocomposite with high redox ability for efficient cleavage of lignin C-C bonds under simulated solar light. Green Chem. 23(24), 10071-10078. [https://doi.org/10.1039/d1gc03455c.](https://doi.org/10.1039/d1gc03455c)