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Computational methods

All the simulations were explored based on density functional theory (DFT) using 

the Vienna Ab initio simulation package (VASP).1,2 The projector augmented wave 

(PAW) 3 method and Perdew−Burke−Ernzerhof (PBE) functional within the 

generalized gradient approximation (GGA) for the exchange–correlation energy were 

considered.4 The wave functions of the simulated systems were expanded in a plane-

wave basis with the energy cutoff as 420 eV, and the Monkhorst–Pack k-point mesh in 

the Brillouin zone was set to be 3 × 3 × 1 and 11 × 11 × 1 for the total energy and 

density of states calculations, respectively. The convergence criterion was set to be 0.01 

eV·Å−1 and 10−5 eV for force and energy of the studied system, respectively, within the 

conjugated gradient method for geometry optimization. DFT+U methods were applied 

to describe the localized 3d electron correlation of transition metals (TM) by taking the 

difference between the Coulomb U and exchange J parameter (Ueff = U − J) into 

account, with Ueff value of 4.0, 3.8, 4.4, 4.0, 4.0, and 4.0 eV5-9 for Fe, Co, Ni, Mn, Cr, 

and Ti atoms, respectively. To describe the effects of the long-range van der Waals 

interactions, a semiclassical dispersion correction scheme (DFT-D3) was used.10 The 

solvation treatment method of VASPsol, which well express the long-range 

electrostatic interaction and the average properties of the solvent were used. The 

vacuum layer is set to be 20 Å to avoid interaction between two neighboring images.

The formation energy (Ef) of monolayers was estimated according by

Ef =EM3(HAT)2 − 2EHAT − 3ETM,     (S1)

where EM3(HAT)2, EHAT and ETM are the total energy of the M3(HAT)2 monolayer, HAT 

molecule, and central metal, respectively.

The d band center (εd) value can be given by: 

 (S2)
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where ρ(E) is the DOS projected on the d-states of the metal atoms and Ef is the Fermi 
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energy of the system.

The desorption energy (ΔEdes) of O2 on the monolayer can be calculated by

ΔEdes = Eads + Esub − Eads/sub, (S3)

where Eads/sub is the total energy of the M3(HAT)2 monolayer with OO* adsorption 

intermediates. Eads and Esub are the total energy of O2 and the pristine M3(HAT)2 

substrate, respectively.

The overall OER process in the acid environment can be described as follows:

2H2O(l) →O2+4H++4e− (S4)

and the elementary reaction steps for the 4e− pathway are shown below:

H2O(l) +*→ OH*+H++e− (S5)

OH* → O*+ H++e− (S6)

H2O(l) + O*→OOH*+ H++e−  (S7)

OOH* →O2(g)+ H++e−  (S8)

where the “*” denotes the active site of the catalyst. (l) and (g) refer to liquid and gas 

phase.

In the first step, a H2O molecule is captured by the catalyst substrate “*”, followed 

by the release of a proton and an electron, leading to the formation of *OH (eq S5). 

Then, another proton and electron separate from *OH, forming the *O intermediate (eq 

S6). In the third step, another H2O molecules react with O* to generate OOH*, 

accompanied by the release of a proton and electron (eq S7). Finally, the O2 molecules 

are generated from *OOH, producing the final proton and electron (eq S8).

The thermochemistry of OER is interpreted by using the CHE model developed 

by Nørskov and co-workers to calculate the Gibbs reaction free energy,11 which defines 

the free energy of H+ + e− as that of 1/2H2 under standard conditions. For each step, the 

Gibbs free energy change (ΔG) is defined by the following equation:

ΔG = ΔE − TΔS + ΔZPE + ΔGU + ΔGpH  (S9)

where ΔE, ΔZPE, and ΔS represent the total energy difference, zero-point energy 

change, and entropy change, respectively. The values for ΔZPE and ΔS were obtained 

from the vibrational frequency calculations, while the entropy of H2 and H2O can be 
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obtained directly from the standard thermodynamic database. T represents for the 

temperature and is taken as 298.15 K. ΔGU is determined by the applied external 

potential U to the standard electrode and can be expressed as ΔGU =−eU. ΔGpH 

represents the Gibbs free energy change correlated to the H+ concentrations, which is 

determined by ΔGpH = kBT × ln10 × pH，kB refers to the Boltzmann constant and pH 

is assumed to be 0 in an acidic medium.

The Gibbs free energy changes of the four steps in eq S5−S8 are ΔG1, ΔG2, ΔG3, 

and ΔG4, respectively. The overpotential (η) is given by the following equations:

η = (max [ΔG1, ΔG2, ΔG3, ΔG4]/e) − 1.23V  (S10)
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Table S1 Lattice parameter (a, Å), pore size (DM, Å), formation energy (Ef, eV), 

magnetic moments on M ion (Mm, μB) and system (Mtol, μB), the value of d-band center 

(εd) and charge transfer (q, |e|) of M3(HAT)2 monolayer.

Magnetic  
ground state

Lattice DM E f Mm M tol εd Δq

Fe3(HAT)2

spin 14.24 7.05 −7.59 3.66 10.31 −2.28 -0.86

nonspin 13.75 6.87 −2.51 - - −0.61 -1.25

Co3(HAT)2

spin 14.24 7.19 −3.37 2.37 6.53 −1.97 -0.74

nonspin 13.82 6.91 −2.61 - - −1.17 -0.94

Ni3(HAT)2

spin 14.09 7.05 −1.84 1.04 3.54 −1.69 -0.81

nonspin 13.68 6.84 −0.41 - - −3.32 -0.56

Mn3(HAT)2

spin 14.38 7.19 −10.12 4.58 12.00 −1.22 -1.04

nonspin 13.75 6.87 −1.12 - - −0.20 -1.38

Cr3(HAT)2

spin 14.19 7.09 −9.59 3.76 8.59 −0.03 -1.04

nonspin 14.02 7.02 −0.04 - - 0.48 -1.27

Ti3(HAT)2

spin 14.28 7.14 −7.25 1.62 2.15 0.98 -1.48

nonspin 14.25 7.12 −4.78 - - 0.25 -1.33

Fig. S1 Relations between spin moment and (a) formation energy difference (ΔEf), (b) 

the charge transfer difference (Δq) from the metal atom to the coordinating atoms 

between spin-polarized and non-spin-polarized systems.
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Fig. S2 The density of state (DOS) of the X and N atoms in the spin-polarized (a) 

Fe3(HAT)2, (b) Co3(HAT)2, (c) Ni3(HAT)2, (d) Mn3(HAT)2, (e) Cr3(HAT)2, (f) 

Ti3(HAT)2 monolayers, respectively. Spin-polarized M3(HAT)2 and M3(HAT)2-OO are 

demonstrated above and below, respectively. The black dashed line at zero denotes the 

position of the Fermi level.



S7

Fig. S3 The density of state (DOS) of the nonspin-polarized (a) Fe3(HAT)2, (b) 

Co3(HAT)2, (c) Ni3(HAT)2, (d) Mn3(HAT)2, (e) Cr3(HAT)2, (f) Ti3(HAT)2 monolayers, 

respectively. Nonspin-polarized M3(HAT)2 and M3(HAT)2-OO are demonstrated above 

and below, respectively. The black dashed line at zero denotes the position of the Fermi 

level.
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Fig. S4 The charge density distribution of (a) Fe3(HAT)2, (b) Co3(HAT)2, (c) 

Ni3(HAT)2, (d) Mn3(HAT)2, (e) Cr3(HAT)2, (f) Ti3(HAT)2 monolayers, respectively. 

Spin-polarized monolayers are on the left, and non-spin-polarized monolayers are on 

the right.

Fig. S5 ELF of (a) Fe3(HAT)2, (b) Co3(HAT)2, (c) Ni3(HAT)2, (d) Mn3(HAT)2, (e) 

Cr3(HAT)2, (f) Ti3(HAT)2 monolayers, respectively. Spin-polarized monolayers are on 

the left, and non-spin-polarized monolayers are on the right.
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Table S2 Gibbs free energy change (ΔG) and overpotentials (η) of each elementary 

step for OER on M3(HAT)2 monolayers

Magnetic 
ground state

ΔG1
(eV)

ΔG2
(eV)

ΔG3
(eV)

ΔG4
(eV)

η
(V)

Fe3(HAT)2

spin -0.74 1.61 1.63 2.43 1.20

nonspin -1.08 1.79 1.10 3.12 1.89

Co3(HAT)2

spin -0.26 1.22 1.83 2.14 0.91

nonspin 0.26 1.35 1.57 1.76 0.53

Ni3(HAT)2

spin 0.03 2.50 0.59 1.81 1.27

nonspin -0.44 1.30 1.65 2.42 1.19

Mn3(HAT)2

spin 1.52 -0.61 3.84 0.18 2.61

nonspin -1.05 0.61 2.26 3.11 1.88

Cr3(HAT)2

spin 0.06 1.41 1.68 1.77 0.54

nonspin -0.77 1.1 2.29 2.30 1.07

Ti3(HAT)2

spin -1.10 0.49 2.88 3.00 1.77

nonspin -1.40 0.04 3.13 3.14 1.91
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Table S3 The spin moment, adsorption energy difference, variations of charge 

difference (after and before O2 adsorption), the difference of charge transfer between 

non-spin-polarized M3(HAT)2 and spin-polarized M3(HAT)2 of O2 adsorbed M3(HAT)2 

systems. 

Ni3(HAT)2 Co3(HAT)2 Fe3(HAT)2 Mn3(HAT)2 Cr 3(HAT)2 Ti3(HAT)2

ΔMm (μB) 1.50 2.35 3.94 4.24 3.05 1.01

EOO
nonspin (eV) -1.94 -1.10 -2.80 -3.02 -2.85 -4.06

EOO
spin (eV) -1.30 -0.34 -1.82 -1.88 -1.77 -3.19

ΔEOO (eV) -0.64 -0.76 -0.98 -1.14 -1.08 -0.87

Δqnonspin ( e−) 0.03 -0.04 0.01 0.03 -0.07 -0.04

Δqspin( e−) 0.05 -0.04 -0.23 -0.08 -0.19 0.00

Δq ( e−) -0.02 0.00 0.24 0.11 0.12 -0.04

Fig. S6 The orbital contribution of pCOHP between M atoms (Fe, Co, Ni, Mn, Cr and 

Ti) and intermediates OO* on M3(HAT)2.
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Table S4 The value of ICOHP between central metal atoms and the adsorption 

intermediate species OO*.

Ni3(HAT)2 Co3(HAT)2 Fe3(HAT)2 Mn3(HAT)2 Cr 3(HAT)2 Ti3(HAT)2

nonspin -2.63 -2.35 -2.35 -2.60 -3.18 -3.62

spin -1.57 -1.31 -1.88 -1.91 -2.83 -3.10
ΔICOHP -1.06 -1.04 -0.47 -0.69 -0.35 -0.52

Fig. S7 Correlation between spin moment and the charge difference between M atom 

and O (Δq).
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