Supporting Information

Correlation between Spin Effect and Catalytic Activity of Two Dimensional Metal Organic Frameworks for Oxygen Evolution Reaction

Feifan Wang, Liang Hu and Yu Jing*

¹Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China

Email:

yujing@njfu.edu.cn

Computational methods

All the simulations were explored based on density functional theory (DFT) using the Vienna Ab initio simulation package (VASP).^{1,2} The projector augmented wave (PAW) ³ method and Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA) for the exchange-correlation energy were considered.⁴ The wave functions of the simulated systems were expanded in a planewave basis with the energy cutoff as 420 eV, and the Monkhorst–Pack k-point mesh in the Brillouin zone was set to be $3 \times 3 \times 1$ and $11 \times 11 \times 1$ for the total energy and density of states calculations, respectively. The convergence criterion was set to be 0.01 $eV \cdot Å^{-1}$ and $10^{-5} eV$ for force and energy of the studied system, respectively, within the conjugated gradient method for geometry optimization. DFT+U methods were applied to describe the localized 3d electron correlation of transition metals (TM) by taking the difference between the Coulomb U and exchange J parameter $(U_{\text{eff}} = U - J)$ into account, with $U_{\rm eff}$ value of 4.0, 3.8, 4.4, 4.0, 4.0, and 4.0 eV⁵⁻⁹ for Fe, Co, Ni, Mn, Cr, and Ti atoms, respectively. To describe the effects of the long-range van der Waals interactions, a semiclassical dispersion correction scheme (DFT-D3) was used.¹⁰ The solvation treatment method of VASPsol, which well express the long-range electrostatic interaction and the average properties of the solvent were used. The vacuum layer is set to be 20 Å to avoid interaction between two neighboring images.

The formation energy (E_f) of monolayers was estimated according by

$$E_{\rm f} = E_{\rm M_3(HAT)_2} - 2E_{\rm HAT} - 3E_{\rm TM},$$
 (S1)

where $E_{M_3(HAT)_2}$, E_{HAT} and E_{TM} are the total energy of the M₃(HAT)₂ monolayer, HAT molecule, and central metal, respectively.

The *d* band center (ε_d) value can be given by:

$$\varepsilon_{d} = \frac{\int_{-\infty}^{+\infty} \rho(E) (E - E_{f}) dE}{\int_{-\infty}^{+\infty} (E - E_{f}) dE}$$
(S2)

where $\rho(E)$ is the DOS projected on the *d*-states of the metal atoms and $E_{\rm f}$ is the Fermi

energy of the system.

The desorption energy (ΔE_{des}) of O₂ on the monolayer can be calculated by

$$\Delta E_{\rm des} = E_{\rm ads} + E_{\rm sub} - E_{\rm ads/sub},\tag{S3}$$

where $E_{ads/sub}$ is the total energy of the M₃(HAT)₂ monolayer with OO* adsorption intermediates. E_{ads} and E_{sub} are the total energy of O₂ and the pristine M₃(HAT)₂ substrate, respectively.

The overall OER process in the acid environment can be described as follows:

$$2H_2O(1) \rightarrow O_2 + 4H^+ + 4e^-$$
 (S4)

and the elementary reaction steps for the 4e⁻ pathway are shown below:

$$H_2O(l) +^* \rightarrow OH^* + H^+ + e^-$$
(S5)

$$OH^* \to O^{*+} H^{++}e^{-} \tag{S6}$$

$$H_2O(1) + O^* \rightarrow OOH^* + H^+ + e^-$$
(S7)

$$OOH^* \rightarrow O_2(g) + H^+ + e^-$$
 (S8)

where the "*" denotes the active site of the catalyst. (l) and (g) refer to liquid and gas phase.

In the first step, a H_2O molecule is captured by the catalyst substrate "*", followed by the release of a proton and an electron, leading to the formation of *OH (eq S5). Then, another proton and electron separate from *OH, forming the *O intermediate (eq S6). In the third step, another H_2O molecules react with O* to generate OOH*, accompanied by the release of a proton and electron (eq S7). Finally, the O₂ molecules are generated from *OOH, producing the final proton and electron (eq S8).

The thermochemistry of OER is interpreted by using the CHE model developed by Nørskov and co-workers to calculate the Gibbs reaction free energy,¹¹ which defines the free energy of $H^+ + e^-$ as that of $1/2H_2$ under standard conditions. For each step, the Gibbs free energy change (ΔG) is defined by the following equation:

$$\Delta G = \Delta E - T\Delta S + \Delta ZPE + \Delta G_U + \Delta G_{pH}$$
(S9)

where ΔE , ΔZPE , and ΔS represent the total energy difference, zero-point energy change, and entropy change, respectively. The values for ΔZPE and ΔS were obtained from the vibrational frequency calculations, while the entropy of H₂ and H₂O can be

obtained directly from the standard thermodynamic database. *T* represents for the temperature and is taken as 298.15 K. ΔG_U is determined by the applied external potential *U* to the standard electrode and can be expressed as $\Delta G_U = -eU$. ΔG_{pH} represents the Gibbs free energy change correlated to the H⁺ concentrations, which is determined by $\Delta G_{pH} = k_B T \times \ln 10 \times pH$, k_B refers to the Boltzmann constant and pH is assumed to be 0 in an acidic medium.

The Gibbs free energy changes of the four steps in eq S5–S8 are ΔG_1 , ΔG_2 , ΔG_3 , and ΔG_4 , respectively. The overpotential (η) is given by the following equations:

$$\eta = (\max \left[\Delta G_1, \Delta G_2, \Delta G_3, \Delta G_4\right]/e) - 1.23V$$
(S10)

(<i>e</i> d) and charge transfer (q, e) of M ₃ (HAT) ₂ monolayer.								
	Magnetic ground state	Lattice	D _M	E_{f}	M _m	M_{tol}	εd	Δq
Fe ₃ (HAT) ₂	spin	14.24	7.05	-7.59	3.66	10.31	-2.28	-0.86
	nonspin	13.75	6.87	-2.51	-	-	-0.61	-1.25
Co ₃ (HAT) ₂	spin	14.24	7.19	-3.37	2.37	6.53	-1.97	-0.74
	nonspin	13.82	6.91	-2.61	-	-	-1.17	-0.94
Ni ₃ (HAT) ₂	spin	14.09	7.05	-1.84	1.04	3.54	-1.69	-0.81
	nonspin	13.68	6.84	-0.41	-	-	-3.32	-0.56
Mn ₃ (HAT) ₂	spin	14.38	7.19	-10.12	4.58	12.00	-1.22	-1.04
	nonspin	13.75	6.87	-1.12	-	-	-0.20	-1.38
Cr ₃ (HAT) ₂	spin	14.19	7.09	-9.59	3.76	8.59	-0.03	-1.04
	nonspin	14.02	7.02	-0.04	-	-	0.48	-1.27
Ti ₃ (HAT) ₂	spin	14.28	7.14	-7.25	1.62	2.15	0.98	-1.48
	nonspin	14.25	7.12	-4.78	-	-	0.25	-1.33

Table S1 Lattice parameter (*a*, Å), pore size (D_M , Å), formation energy (E_f , eV), magnetic moments on M ion (M_m , μ B) and system (M_{tol} , μ B), the value of *d*-band center (ε d) and charge transfer (q, |e|) of M₃(HAT)₂ monolayer.

Fig. S1 Relations between spin moment and (a) formation energy difference (ΔE_f), (b) the charge transfer difference (Δq) from the metal atom to the coordinating atoms between spin-polarized and non-spin-polarized systems.

Fig. S2 The density of state (DOS) of the X and N atoms in the spin-polarized (a) $Fe_3(HAT)_2$, (b) $Co_3(HAT)_2$, (c) $Ni_3(HAT)_2$, (d) $Mn_3(HAT)_2$, (e) $Cr_3(HAT)_2$, (f) $Ti_3(HAT)_2$ monolayers, respectively. Spin-polarized $M_3(HAT)_2$ and $M_3(HAT)_2$ -OO are demonstrated above and below, respectively. The black dashed line at zero denotes the position of the Fermi level.

Fig. S3 The density of state (DOS) of the nonspin-polarized (a) $Fe_3(HAT)_2$, (b) $Co_3(HAT)_2$, (c) $Ni_3(HAT)_2$, (d) $Mn_3(HAT)_2$, (e) $Cr_3(HAT)_2$, (f) $Ti_3(HAT)_2$ monolayers, respectively. Nonspin-polarized $M_3(HAT)_2$ and $M_3(HAT)_2$ -OO are demonstrated above and below, respectively. The black dashed line at zero denotes the position of the Fermi level.

Fig. S4 The charge density distribution of (a) $Fe_3(HAT)_2$, (b) $Co_3(HAT)_2$, (c) $Ni_3(HAT)_2$, (d) $Mn_3(HAT)_2$, (e) $Cr_3(HAT)_2$, (f) $Ti_3(HAT)_2$ monolayers, respectively. Spin-polarized monolayers are on the left, and non-spin-polarized monolayers are on the right.

Fig. S5 ELF of (a) $Fe_3(HAT)_2$, (b) $Co_3(HAT)_2$, (c) $Ni_3(HAT)_2$, (d) $Mn_3(HAT)_2$, (e) $Cr_3(HAT)_2$, (f) $Ti_3(HAT)_2$ monolayers, respectively. Spin-polarized monolayers are on the left, and non-spin-polarized monolayers are on the right.

	Magnetic ground state	ΔG_1 (eV)	ΔG_2 (eV)	ΔG3 (eV)	ΔG_4 (eV)	η (V)
Fe ₃ (HAT) ₂	spin	-0.74	1.61	1.63	2.43	1.20
	nonspin	-1.08	1.79	1.10	3.12	1.89
Co ₃ (HAT) ₂	spin	-0.26	1.22	1.83	2.14	0.91
	nonspin	0.26	1.35	1.57	1.76	0.53
Ni ₃ (HAT) ₂	spin	0.03	2.50	0.59	1.81	1.27
	nonspin	-0.44	1.30	1.65	2.42	1.19
Mn ₃ (HAT) ₂	spin	1.52	-0.61	3.84	0.18	2.61
	nonspin	-1.05	0.61	2.26	3.11	1.88
Cr ₃ (HAT) ₂	spin	0.06	1.41	1.68	1.77	0.54
	nonspin	-0.77	1.1	2.29	2.30	1.07
Ti ₃ (HAT) ₂	spin	-1.10	0.49	2.88	3.00	1.77
	nonspin	-1.40	0.04	3.13	3.14	1.91

Table S2 Gibbs free energy change (ΔG) and overpotentials (η) of each elementary step for OER on M₃(HAT)₂ monolayers

Table S3 The spin moment, adsorption energy difference, variations of charge difference (after and before O_2 adsorption), the difference of charge transfer between non-spin-polarized $M_3(HAT)_2$ and spin-polarized $M_3(HAT)_2$ of O_2 adsorbed $M_3(HAT)_2$ systems.

	Ni ₃ (HAT) ₂	Co ₃ (HAT) ₂	$Fe_3(HAT)_2$	Mn ₃ (HAT) ₂	Cr ₃ (HAT) ₂	Ti ₃ (HAT) ₂
$\Delta M_{m}\left(\mu B ight)$	1.50	2.35	3.94	4.24	3.05	1.01
$E_{OO}^{nonspin}\left(eV ight)$	-1.94	-1.10	-2.80	-3.02	-2.85	-4.06
$E_{OO}^{spin} (eV)$	-1.30	-0.34	-1.82	-1.88	-1.77	-3.19
$\Delta E_{OO} (eV)$	-0.64	-0.76	-0.98	-1.14	-1.08	-0.87
$\Delta q^{nonspin}$ (e^{-})	0.03	-0.04	0.01	0.03	-0.07	-0.04
$\Delta q^{spin}(e^{-})$	0.05	-0.04	-0.23	-0.08	-0.19	0.00
$\Delta q (e^{-})$	-0.02	0.00	0.24	0.11	0.12	-0.04

Fig. S6 The orbital contribution of pCOHP between M atoms (Fe, Co, Ni, Mn, Cr and Ti) and intermediates OO* on $M_3(HAT)_2$.

 Table S4 The value of ICOHP between central metal atoms and the adsorption intermediate species OO*.

	Ni ₃ (HAT) ₂	$Co_3(HAT)_2$	$Fe_3(HAT)_2$	Mn ₃ (HAT) ₂	Cr ₃ (HAT) ₂	$Ti_3(HAT)_2$
nonspin	-2.63	-2.35	-2.35	-2.60	-3.18	-3.62
spin	-1.57	-1.31	-1.88	-1.91	-2.83	-3.10
ΔΙϹΟΗΡ	-1.06	-1.04	-0.47	-0.69	-0.35	-0.52

Fig. S7 Correlation between spin moment and the charge difference between M atom and O (Δq).

References

- 1 Kresse and Hafner, *Phy s. Rev. B: Condens. Matter*, 1993, 47, 558-561.
- 2 Kresse and Furthmuller, Phy s. Rev. B: Condens. Matter, 1996, 54, 11169-11186.
- 3 Blochl, Phy s. Rev. B: Condens. Matter, 1994, 50, 17953-17979.
- 4 Perdew, Burke and Ernzerhof, *Phy s. Rev. Lett.*, 1996, 77, 3865-3868.
- M. Capdevila-Cortada, Z. Łodziana and N. López, ACS Catal., 2016, 6, 8370-8379.
- 6 J. Zhou and Q. Sun, J. Am. Chem. Soc., 2011, 133, 15113-15119.

- 7 M. Aykol and C. Wolverton, *Phys. Rev. B*, 2014, **90**, 115105.
- 8 L. Wang, T. Maxisch and G. Ceder, *Phys. Rev. B*, 2006, **73**, 195107.
- 9 J. Geng, R. Wu, H. Bai, I.-N. Chan, K. W. Ng, W. F. Ip and H. Pan, *Int. J. Hydrogen Energy*, 2022, 47, 18725-18737.
- S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 11 J. Rossmeisl, A. Logadottir and J. K. Norskov, Chem. Phys., 2005, 319, 178-184.