Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information:

A Solid-State Electrolyte Based on Electrochemical Active LiMn₂O₄ for Lithium Metal Batteries

Jingzhen Du ^a, Zhichao Chen ^a, Bohao Peng ^b, Zewen Sun ^a, Wenzhuo Wu ^c, Qi Zhou ^b, Shuang Xia ^a, Lili Liu ^{a,*}, Lijun Fu ^a, Yuhui Chen ^a, Tao

Wang ^b, and Yuping Wu^{a,b,c,*}

^a School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China

^b Confucius Energy Storage Lab, School of Energy and Environment & Z Energy Storage Center, Southeast University, Nanjing 211189, China

° R & D Center, DKJ New Energy Materials Ltd. Co., Shaoxing 312365, China

Materials

All of the chemicals mentioned in the synthesis steps were used directly without further treatment. LiMn₂O₄ (LMO) was purchased from Tmall. Ltd. Electrolyte (LB-315) was purchased from Zhangjiagang Guotai Huarong New Chemical Materials Co., Ltd. The anodes (lithium foils) were purchased from Guangdong Canrd New Energy Technology Co., Ltd. Poly(vinylidene difluoride) (PVDF), *N*-methyl pyrrolidone (NMP), dimethylacetamide (DMAc) and acetylene black were purchased from Sinopharm Group Co., Ltd.

Calculation

The ionic conductivity (σ) and activation energy (E_a) at different temperatures can be calculated from the following equation:

$$\sigma = \frac{L}{RS} = Aexp \frac{-E_a}{K_B T}$$
(S1)

where *L* is the electrolyte thickness, *R* is the bulk resistance, *S* is the contact area of the SSE and electrode, K_B is the Boltzmann constant, *A* is the pre-exponential factor, and *T* is the temperature.

The lithium ion transfer number (t_{Li+}) was obtained through calculation from the following equation:

$$t_{Li+} = \frac{I_s(\Delta V - I_0 R_0)}{I_0(\Delta V - I_s R_s)}$$
(S2)

where I_0 and I_s are the initial current and steady-state current in the current curve respectively, ΔV is the transition potential (10 mV), R_0 and R_s are the AC impedance of the cell before and after polarization, respectively.

Figure S1. Chronoamperometry curve of electronic conductivity of LMO-X SSEs under 0.5 V.

Figure S2. ATR-FTIR spectra comparison of LMO-X SSEs.

Figure S3. TGA image of LMO-X SSEs.

Figure S4. The stress-strain curves of LMO-X SSEs.

Figure S5. EIS test of LMO-1 (a), LMO-3 (b), LMO-5 (c) in SS||SS cells under different temperatures.

Figure S6. Impedance plots before and after Li⁺ transfer number test.

Figure S7. Tafel plots of symmetric cell Li|LMO-X|Li.

Figure S8. Galvanostatic cycling of lithium symmetric cells applying LMO-1 (a) and LMO-5 (b) in under 0.25 mA cm⁻² to reach 0.125 mAh cm⁻².

Figure S9. XPS profiles of Li||Li symmetric cells after cycling under 0.25 mA cm⁻² and 0.125 mAh cm⁻² with varying SSEs. (a) LMO-1, (b) LMO-3, and (c) LMO-5.

Figure S10. Cross-section SEM images of Li|LMO-3|Li symmetric cell before and after cycling under 0.25 mA cm⁻² and 0.125 mAh cm⁻². (a) LMO-3 and (b) Li anode metal.

Figure S11. Cyclic voltammetry curve of the Li|LMO-3|LFP cell.

Figure S12. Cycling performance of LillLFP cells with LMO-1 (a) and LMO-5 (b) at 0.5 C.

Absorption peak (cm ⁻¹)	Stretching vibration modes
1401	CH ₂ wagging vibration
1169	CF ₂ asymmetric stretching vibration
873	C-C skeletal vibration
600, 563	MnO ₆ asymmetric stretching vibration
479	CF ₂ bending vibration

Table S1. The vibration modes corresponding to each infrared absorption peak.

Solid State electrolyte	Thickness (um)	Conductivity (S cm ⁻¹)	Cathode material	Cycling performance	Ref.
PVDF/30 wt.% LMO	~20	5.17 × 10 ⁻⁴ at 35 °C	LFP	147.7 mAh g ⁻¹ after 200 cycles under 0.5C at 35 °C	This work
PEO/VAVS/LiTFSI		1.89 × 10 ⁻⁴ at 25 °C	LFP	110.7 mAh g ⁻¹ after 200 cycles under 0.5C at 35 °C	1
PE/SN/PEGDA/1% wt.%LiNO ₃ /LiTFSI	~16	1.08×10^{-4} at room temperature	LCO	110.6 mAh g^{-1} after 385 cycles under 0.2C at room temperature	2
PEO/ZiF-67/LITFSI		1.0 × 10 ⁻⁴ at 25 °C	LFP	124.0 mAh g ⁻¹ after 200 cycles under 0.2C at 60 $^{\circ}$ C	3
PEO/10 wt.% LLZO/LITFSI	~40	2.39 × 10 ⁻⁴ at 25 °C	LFP	107.0 mAh g ⁻¹ after 200 cycles under 0.1C at 60 $^{\circ}$ C	4
PEO/LiTFSI/wheat flour electrolyte	~300	2.62 × 10⁻⁵ at 25 °C	NCM811	62.9 mAh g ⁻¹ after 60 cycles under 0.1C at 25 °C	5
PEO/10% SiO ₂ /LiClO ₄	~200	4.4 × 10 ^{−5} at 30 °C	LFP	100.0 mAh g ⁻¹ after 80 cycles under 0.1C at 60 °C	6
P(PO/EM)/LITFPFB		1.55 × 10 ^{−4} at 70 °C	LiFe _{0.2} Mn _{0.8} PO ₄	125.6 mAh g ⁻¹ after 100 cycles under 0.1C at 70 $^{\circ}$ C	7
QSCE-PH/GPFIL3/P	~21	3.24×10^{-4} at room temperature	LFP	117.0 mAh g ⁻¹ after 350 cycles under 0.5C at 30 $^{\circ}\mathrm{C}$	8
PEO/10 wt.% LLZTO/LITFSI	~70	1.17 × 10 ^{−4} at 30 °C	LFP	127.0 mAh g ⁻¹ after 200 cycles under 0.2C at 55 °C	9

Table S2 Comparison of ionic conductivities and cycling performance for SSEs.

- 1. W. Tang, S. Tang, X. Guan, X. Zhang, Q. Xiang and J. Luo, *Adv. Funct. Mater.*, 2019, **29**, 1900648.
- 2. B. Yuan, B. Zhao, Q. Wang, Y. Bai, Z. Cheng, Z. Cong, Y. Lu, F. Ji, F. Shen, P.-F. Wang and X. Han, *Energy Storage Mater.*, 2022, 47, 288-296.
- 3. Y. Zou, Z. Ao, Z. Zhang, N. Chen, H. Zou, Y. Lv and Y. Huang, *Chem. Eng. Sci.*, 2023, 275, 118705.
- 4. J. Zhang, N. Zhao, M. Zhang, Y. Li, P. K. Chu, X. Guo, Z. Di, X. Wang and H. Li, *Nano Energy*, 2016, 28, 447-454.
- 5. Y. Lin, Y. Cheng, J. Li, J. D. Miller, J. Liu and X. Wang, *RSC Adv.*, 2017, 7, 24856-24863.
- 6. D. Lin, W. Liu, Y. Liu, H. R. Lee, P. C. Hsu, K. Liu and Y. Cui, *Nano Lett*, 2016, 16, 459-465.
- 7. Q. Wang, Z. Cui, Q. Zhou, X. Shangguan, X. Du, S. Dong, L. Qiao, S. Huang, X. Liu, K. Tang, X. Zhou and G. Cui, *Energy Storage Mater.*, 2020, 25, 756-763.
- 8. Y. Cui, G. Yu, R. Liu, D. Miao and D. Wu, Chin. J. Chem., 2023, 41, 2848-2854.
- 9. L. Chen, Y. Li, S.-P. Li, L.-Z. Fan, C.-W. Nan and J. B. Goodenough, *Nano Energy*, 2018, 46, 176-184.