Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Revealing the key factors affecting the anode performance of metal-ion batteries: a case study of boron carbide monolayers

Shicong Ding¹, Xu Yan¹, Javed Rehman^{2,*}, Sheng Wang¹, Yong Liu¹, and Guochun Yang^{1,3*}

¹State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China

²State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China ³Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Northeast Normal University, Changchun 130024, China

Corresponding Authors: javedktk15@ysu.edu.cn and yanggc468@nenu.edu.cn

Index

1.	Computational details 3
2.	The planar average potential as a function of the distance along the c -axis for five
	B–C monolayers······4
3.	Crystal structure, phonon spectrum, Young's modulus and Poisson's ratio of BC7
	and BC ₉ monolayers
4.	AIMD simulations for five B-C monolayers
5.	Projected band structure of BC ₇ and BC ₉ monolayers7
6.	Charge density of BC ₇ , BC ₈ , BC ₉ , and BC ₁₁ 8
7.	Ion migration paths and barriers for the BC ₈ , BC ₉ , and BC ₁₁ monolayers9
8.	K ions migration paths and barriers for the BC ₇ monolayer10
9.	ELF snapshots of K loaded on BC ₆ , BC ₇ , BC ₉ , and BC ₁₁ , respectively11
10.	OCV as a function of K concentration in BC_6 , BC_7 , BC_9 , and BC_{11} ,
	respectively 12
11.	AIMD simulations of K_4BC_6 , K_5BC_7 , K_7BC_8 , K_7BC_9 , and K_8BC_{11} at 300
	K13
12.	Structural information of the five B-C monolayers14
13.	Comparison of five B-C monolayers with reported 2D materials for cohesion
	energy16
14.	The elastic constants, average Young's modulus, and average Poisson's ratios of
	the five B–C monolayers
15.	The variation of lattice constants of the K adsorbed five B-C monolayers as a
	function of K concentration 18
16.	The elastic constants, average Young's modulus, and average Poisson's ratios of
	the five fully potassiated B-C monolayers19
17.	References ······20

Computational Details

The particle swarm optimization (PSO) method, integrated within the evolutionary algorithm and implemented in the Crystal structure AnaLYsis by Particle Swarm Optimization (CALYPSO) code,1, 2 was employed to identify the lowest-energy structures of $B_v C_x$ (x = 3-12, y = 1; x = 3, 5, 7, 9, 11, y = 2). Specifically, the number of layers was set to 1, the layer thickness was set to 0.2 Å, and a vacuum layer of 20 Å along the c-axis was introduced to prevent interlayer interactions, which were consistent with previously reported values.^{3, 4} Initially, random structures with specific symmetry were generated, where atomic coordinates were produced through crystallographic symmetry operations. Subsequent local optimizations were performed using the VASP code,^{5, 6} under a version with a fixed *c*-axis, employing the conjugate gradients method and terminating when the total energy changes fell below 1×10^{-5} eV per cell. Following the processing of the initial generation structures, 60% of those with lower enthalpies were selected to generate the subsequent generation structures via PSO. Additionally, 40% of the structures in the new generation were randomly created. Structural searches were carried out for 1-4 formula units, with a maximum of 30 atoms. Each generation consisted of 40 structures, and the calculations were iterated over at least 20 generations.

The scanning potential energy surface was constructed by calculating the energy of a single K atom at various positions above the B–C monolayer. A Python script⁷ was employed to automatically generate these positions, using the relaxed CONTCAR file of the optimal adsorption site within a 2×2 supercell as the input to determine the ideal adsorption height. For the BC₆ and BC₈ monolayers, 12 positions were generated in both the *x* and *y* directions, resulting in a total of 144 positions. Additionally, for the BC₁₁ monolayer, 12 positions were generated in the *x* direction and 8 in the *y* direction, totaling 96 positions. Relaxation for each position was performed using VASP code.^{5, 6} Given that most sites are not conducive to K atom adsorption, the K atom was constrained to move only vertically to achieve adsorption equilibrium. Upon completing the calculations, the Python script extracted the data and plotted the potential energy surface by calculating the energy differences between each site and the optimal adsorption site.

Supplementary Figures

Fig. S1 The planar average potential as a function of the distance along the *c*-axis for five B–C monolayers. Only the B–C layer (located at 10 Å) exhibits an obvious planar average potential, while the vacuum layer is flat, which indicates that there is no interlayer interaction between adjacent layers.

Fig. S2 (a)-(b) Crystal structures and (c)-(d) phonon spectra of BC_7 and BC_9 monolayers, respectively. The structures also include the electron local function (ELF). (e) represents their Young's modulus, and (f) represents their Poisson's ratio.

Fig. S3 AIMD simulations for (a) BC_6 , (b) BC_7 , (c) BC_8 , (d) BC_9 , and (e) BC_{11} monolayers at 300 K. The inset gives top and side view of the structure after 10 ps.

Fig. S4 AIMD simulations for (a) BC_6 , (b) BC_7 , (c) BC_8 , (d) BC_9 , and (e) BC_{11} monolayers at 600 K. The inset gives top and side view of the structure after 6 ps. Total energy remains equilibrium and the structures are not fractured or collapsed, indicating that they are thermal stable.

Fig. S5 Projected band structures of (a) BC_7 and (b) BC_9 monolayers. The metallic property is mainly contributed by the p_z orbitals, hence here only the p_z orbitals of C (yellow) and B (blue) are given.

Fig. S6 Charge density in the plane 1.6 Å above the sheet for (a) BC_7 , (b) BC_8 , (c) BC_9 , and (d) BC_{11} , respectively.

Fig. S7 Ion migration paths on the (a) BC_8 and (c) BC_9 and (e) BC_{11} monolayers. Green, red, and blue indicate different paths. The corresponding CI-NEB migration barriers of Li, Na, and K across three paths are depicted in (b), (d), and (f). The blue path has the lowest barrier, with Li, Na, and K ion migration energy barriers of 0.33, 0.12, and 0.06 eV for BC_8 , 0.37, 0.14, and 0.08 eV for BC_9 and 0.36, 0.14, and 0.07 eV for BC_{11} , respectively.

Fig. S8 (a) The migration pathways of K ions and (b) their corresponding CI-NEB migration barriers for the three pathways in BC₇. The Path 1 (in blue) represents the minimum K-ion migration path with migration energy barrier of 0.07 eV. It is noted that the BC₇ most stable adsorption site is on the center of B_2C_4 ring, and the optimal migration path is also along the center of B_2C_4 rings.

Fig. S9 ELF snapshots of K loaded on (a) K_4BC_6 , (b) K_5BC_7 , (c) K_7BC_9 , and (d) K_8BC_{11} , respectively. There is significant localization of the electrons between the K ions, which act as anionic electrons to minimize the repulsion between the K ions, thereby increasing the theoretical capacity.

Fig. S10 OCV as a function of K concentration in (a) BC_6 , (b) BC_7 , (c) BC_9 , and (d) BC_{11} , respectively.

Fig. S11 AIMD simulations of K_4BC_6 , K_5BC_7 , K_7BC_8 , K_7BC_9 , and K_8BC_{11} at 300 K. The inset gives top and side view of the structure after 5 ps.

Supplementary Tables

groun					
8- ° - P	Parameters	(fractional)			
		Atoms	x	У	Z
<i>P6/m</i>	a = b = 6.6889 Å	B (2 <i>d</i>)	0.33333	0.66667	0.50000
	c = 20.0000 Å	$C_1 (6 k)$	0.76909	0.80564	0.50000
		$C_2(6 k)$	0.91432	0.53130	0.50000
Pmma	<i>a</i> = 5.0404 Å	B (2 <i>f</i>)	0.75000	0.50000	-0.08341
	<i>b</i> = 20.0000 Å	C ₁ (2 <i>f</i>)	0.75000	0.50000	-0.90458
	<i>c</i> = 8.7524 Å	C ₂ (2 <i>f</i>)	0.75000	0.50000	-0.41753
		C ₃ (2 <i>f</i>)	0.75000	0.50000	-0.57941
		C ₄ (4 <i>j</i>)	0.50746	0.50000	-0.82478
		C ₅ (4 <i>j</i>)	0.00200	0.50000	-0.33739
<i>P</i> -6 <i>m</i> 2	<i>a</i> = <i>b</i> = 7.5423 Å	B ₁ (1 <i>f</i>)	0.66667	0.33333	0.50000
	c = 20.0000 Å	$B_2(1 d)$	0.33333	0.66667	0.50000
		$C_1(6 m)$	0.66785	0.99859	0.50000
		$C_2(3 k)$	0.56470	0.78235	0.50000
		$C_3(1 b)$	0.00000	0.00000	0.50000
		$C_4(3 k)$	0.22208	0.11104	0.50000
		$C_5(3 k)$	0.89720	0.44860	0.50000
Amm2	a = 20.0000 Å	B (2 <i>b</i>)	0.50000	0.00000	-0.88377
	<i>b</i> = 12.5524 Å	$C_1(2 b)$	0.50000	0.00000	-0.23045
	c = 4.3433 Å	$C_2(4 e)$	0.50000	0.29739	-0.37703
		C ₃ (4 <i>e</i>)	0.50000	0.39874	-0.88453
		C ₄ (4 <i>e</i>)	0.50000	0.19966	-0.21179
		C ₅ (4 <i>e</i>)	0.50000	0.39490	-0.21027
Pmm2	<i>a</i> = 7.5152 Å	B (1 <i>b</i>)	0.00000	0.50000	-0.90610
	P6/m Pmma Pmma Amm2 Pmm2	P6/m $a = b = 6.6889 \text{ Å}$ $c = 20.0000 \text{ Å}$ $b = 20.0000 \text{ Å}$ $b = 20.0000 \text{ Å}$ $c = 8.7524 \text{ Å}$ P-6m2 $a = b = 7.5423 \text{ Å}$ $c = 20.0000 \text{ Å}$ $b = 12.5524 \text{ Å}$ $c = 4.3433 \text{ Å}$ Pmm2 $a = 7.5152 \text{ Å}$	P6/m $a = b = 6.6889$ ÅB (2 d) $P6/m$ $a = 20.0000$ Å C_1 (6 k) $c = 20.0000$ Å C_2 (6 k) $Pmma$ $a = 5.0404$ ÅB (2 f) $b = 20.0000$ Å C_1 (2 f) $c = 8.7524$ Å C_2 (2 f) $c = 8.7524$ Å C_2 (2 f) C_4 (4 j) C_5 (4 j) $P-6m2$ $a = b = 7.5423$ Å B_1 (1 f) $c = 20.0000$ Å B_2 (1 d) C_1 (6 m) C_1 (6 m) C_2 (3 k) C_3 (1 b) $Amm2$ $a = 20.0000$ Å B (2 b) $b = 12.5524$ Å C_1 (2 b) $c = 4.3433$ Å C_2 (4 e) C_3 (4 e) C_3 (4 e) $Pmm2$ $a = 7.5152$ Å B (1 b)	P6/m a = b = 6.6889 Å B (2 d) 0.33333 P6/m a = b = 0.6889 Å B (2 d) 0.76909 c = 20.0000 Å C1 (6 k) 0.76909 C2 (6 k) 0.91432 Pmma a = 5.0404 Å B (2 f) 0.75000 b = 20.0000 Å C1 (2 f) 0.75000 c = 8.7524 Å C2 (2 f) 0.75000 c = 8.7524 Å C2 (2 f) 0.75000 C3 (2 f) 0.50746 0.50746 C4 (4 j) 0.50746 0.50746 c = 20.0000 Å B1 (1 f) 0.66667 c = 20.0000 Å B2 (1 d) 0.33333 C1 (6 m) 0.66785 0.50470 c = 20.0000 Å B2 (1 d) 0.30000 C4 (3 k) 0.22208 0.50470 Amm2 a = 20.0000 Å B (2 b) 0.50000 b = 12.5524 Å C1 (2 b) 0.50000 c = 4.3433 Å C2 (4 e) 0.50000 c = 4.3433 Å C2 (4 e) 0.50000 C5 (4 e) 0.50000 C4 (4 e) <	P6/m a = b = 6.6889 Å B (2 d) 0.33333 0.66667 c = 20.0000 Å C1 (6 k) 0.76909 0.80564 C2 (6 k) 0.91432 0.53130 Pmma a = 5.0404 Å B (2 f) 0.75000 0.50000 b = 20.0000 Å C1 (2 f) 0.75000 0.50000 c = 8.7524 Å C2 (2 f) 0.75000 0.50000 c = 8.7524 Å C2 (2 f) 0.75000 0.50000 c = 8.7524 Å C2 (2 f) 0.75000 0.50000 c = 8.7524 Å C2 (2 f) 0.75000 0.50000 Fema a = b = 7.5423 Å B1 (1 f) 0.66667 0.33333 c = 20.0000 Å B2 (1 d) 0.33333 0.66667 f C = 0.0000 Å B2 (1 d) 0.30000 0.00000 f C = 20.0000 Å B2 (1 d) 0.66785 0.98859 Amm2 a = 20.0000 Å B (2 b) 0.50000 0.00000 b = 12.5524 Å C1 (2 b) 0.50000 0.29739 c = 4.3433 Å C2 (4 e) 0.50000

Table S1 Structural information of the five B–C monolayers.

_

b = 20.0000 Å	$C_1(1 b)$	0.00000	0.50000	-0.56093
c = 4.3269 Å	C ₂ (2 <i>f</i>)	0.83037	0.50000	-0.40628
	C ₃ (2 <i>f</i>)	0.33507	0.50000	-0.57926
	C ₄ (2 <i>f</i>)	0.82515	0.50000	-0.07969
	C ₅ (2 <i>f</i>)	0.66310	0.50000	-0.91249
	$\mathrm{C}_{6}\left(1\;d\right)$	0.50000	0.50000	-0.41294
	$C_7 (1 d)$	0.50000	0.50000	-0.07828

=

	$E_{\rm coh}$	Ref.
	(eV/atom)	
Silicene	-3.71	8,9
Phosphorene	-3.61	10, 11
C ₅ N ₂	$-6.74 \sim -6.78$	12
BC ₃	-8.33	13
B ₄ C ₃	-6.89	14
B_3C_2	$-6.83 \sim -6.87$	
B_2C	-6.75	
B_4C	-6.46	
BC ₇	-8.66	15-17
B ₅ C ₈	-7.68	4
BC ₆	-8.61	This study
BC ₇	-8.72	This study
BC ₈	-8.73	This study
BC ₉	-8.78	This study
BC ₁₁	-8.84	This study

Table S2 Comparison of five B–C monolayers with reported 2D materials for cohesion energy (E_{coh}) .

		-		-		
	C_{11}	C_{12}	C_{22}	C_{66}	Ε	v
BC_6	300.27	65.89	300.27	117.20	285.82	0.22
BC ₇	311.50	56.08	313.22	122.55	298.31	0.19
BC ₈	315.29	62.78	315.29	126.26	302.79	0.20
BC ₉	324.05	57.60	324.47	122.69	306.31	0.20
BC ₁₁	325.05	62.92	325.78	131.57	313.48	0.19

Table S3 The elastic constants (C_{ij} in N/m), average Young's modulus (E in N/m), and average Poisson's ratios (v) of the five B–C monolayers. The values of C_{ij} satisfy the Born criteria, indicating mechanical stability.

Material	K	а	b	% change	% change	Average
	concentration			in <i>a</i>	in b	change in the
	KaBCa	6 689	6 689			<i>ab</i> plane
	K ₁ BC ₆	6 713	6 725	0 359	0 538	0 449
DC	K ₁ BC ₆	6 726	6 730	0.553	0.530	0.583
BC_6	$\frac{K_2 B C_6}{K_2 B C_6}$	6 763	6 766	1 106	1 151	1 120
	$\frac{K_3 B C_6}{K_1 B C_6}$	6 759	6 762	1.100	1.131	1.129
	K ₄ BC ₆	5.040	0.702	1.032	1.091	1.002
	$\frac{K_0BC_7}{K_0BC_7}$	5.040	8.732	0.417	0.254	0.200
	$\frac{K_1BC_7}{K_1BC_7}$	5.061	8.783	0.41/	0.354	0.386
BC_7	K ₂ BC ₇	5.058	8.773	0.357	0.240	0.299
1	K ₃ BC ₇	5.058	8.775	0.357	0.263	0.310
	K ₄ BC ₇	5.050	8.783	0.198	0.354	0.276
	K_5BC_7	5.048	8.762	0.159	0.114	0.137
	K_0BC_8	7.542	7.542			
	K ₁ BC ₈	7.576	7.576	0.451	0.451	0.451
	K ₂ BC ₈	7.577	7.578	0.464	0.477	0.471
DC	K ₃ BC ₈	7.588	7.588	0.610	0.610	0.610
BC^8	K ₄ BC ₈	7.593	7.594	0.676	0.689	0.683
	K ₅ BC ₈	7.594	7.595	0.689	0.703	0.696
	K ₆ BC ₈	7.604	7.604	0.822	0.822	0.822
	K ₇ BC ₈	7.608	7.609	0.875	0.888	0.882
	K ₀ BC ₉	4.343	12.552			
	K ₂ BC ₉	4.365	12.583	0.507	0.247	0.377
BC ₉	K ₄ BC ₉	4.367	12.610	0.553	0.462	0.508
	K ₆ BC ₉	4.374	12.601	0.714	0.390	0.552
	K ₇ BC ₉	4.378	12.600	0.806	0.382	0.594
	K_0BC_{11}	7.515	4.327			
	K ₂ BC ₁₁	7.530	4.352	0.200	0.578	0.389
BC_{11}	K ₄ BC ₁₁	7.555	4.360	0.532	0.763	0.648
	K ₆ BC ₁₁	7.549	4.364	0.452	0.855	0.654
	K ₈ BC ₁₁	7.571	4.370	0.745	0.994	0.870

Table S4 The variation of lattice constants (a, b in Å) for the five K adsorbed B–C monolayers as a function of K concentration.

	C_{11}	C_{12}	C_{22}	C_{66}	Ε	v
BC_6	280.83	58.12	280.83	111.35	268.80	0.21
BC ₇	309.39	56.69	311.14	121.98	296.48	0.19
BC ₈	297.61	57.60	297.61	120.00	286.46	0.19
BC ₉	310.71	54.92	314.41	118.83	295.70	0.20
BC ₁₁	308.65	57.13	307.95	126.20	298.15	0.18

Table S5 The elastic constants (C_{ij} in N/m), average Young's modulus (E in N/m), and average Poisson's ratios (v) of the five fully potassiated B–C monolayers. The values of C_{ij} satisfy the Born criteria, indicating mechanical stability.

References

- 1. Y. Wang, J. Lv, L. Zhu and Y. Ma, Phys. Rev. B, 2010, 82, 094116.
- Y. Wang, J. Lv, L. Zhu and Y. Ma, Computer. Phys. Commun., 2012, 183, 2063-2070.
- 3. X. Yu, X. Chen, X. Wang, Z. Yuan, J. Feng and J. Rong, *Chem. Eng. J.*, 2021, **406**, 126812.
- H.-B. Cao, X.-H. Wang, X. Xiong, C.-S. Liu and X.-J. Ye, *Appl. Phys. Lett.*, 2024, 124, 073908.
- 5. G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, 54, 11169.
- 6. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.

7.https://github.com/tamaswells/VASP_script/blob/master/scan_adsorption_energy.py.

- B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen and K. Wu, *Nano*. *Lett.*, 2012, **12**, 3507-3511.
- 9. A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang and Y. Yamada-Takamura, *Phys. Rev. Lett.*, 2012, **108**, 245501.
- H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek and P. D. Ye, ACS Nano, 2014, 8, 4033-4041.
- 11. D. Li, M. Chen, Z. Sun, P. Yu, Z. Liu, P. M. Ajayan and Z. Zhang, *Nat. Nanotechnol.*, 2017, **12**, 901-906.
- 12. M. You, G. Guo, Y. Liao, S. Luo, C. He, C. Tang and J. Zhong, *J. Energy Storage*, 2024, **84**, 111004.
- 13. H. Zhang, Y. Liao, G. Yang and X. Zhou, ACS Omega, 2018, 3, 10517-10525.
- 14. D. Fan, S. Lu, Y. Guo and X. Hu, J. Mater. Chem. C, 2018, 6, 1651-1658.
- 15. D. Das, R. P. Hardikar, S. S. Han, K. R. Lee and A. K. Singh, *Phys. Chem. Chem. Phys.*, 2017, **19**, 24230-24239.
- 16. S. Gong and Q. Wang, J. Phys. Chem. C, 2017, 121, 24418-24424.
- 17. A. P. Durajski and G. T. Kasprzak, *Physica B*, 2023, 660, 414902.