Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Tailoring Atomically Dispersed Fe-Induced Oxygen Vacancy for Highly Efficient Gas-Phase Photocatalytic CO₂ Reduction and NO Removal with Diminished Noxious Byproducts

Nguyen Quoc Thang^{1, 2, 3, 4, 5}, Amr Sabbah^{2, 6, 7, *}, Chih-Yang Huang^{2, 8, 9}, Nguyen Hoang Phuong¹⁰,

Tsai-Yu Lin^{2, 8, 9}, Mahmoud Kamal Hussien^{1, 2, 11}, Heng-Liang Wu^{2, 6, 12}, Chih-I Wu¹³, Nguyet N. T.

Pham¹⁴, Pham Van Viet¹⁰, Chih-Hao Lee⁵, Li-Chyong Chen^{2, 6, 15, *}, Kuei-Hsien Chen^{1, 2, *}

¹Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan

²Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan

³ Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan and National Tsing Hua University, Hsinchu, 300, Taiwan

⁴Institute of Physics, Academia Sinica, Taipei 15201, Taiwan

⁵ Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan

⁶Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 106, Taiwan

⁷Tabbin Institute for Metallurgical Studies, Tabbin, Helwan 109, Cairo 11421, Egypt

- ⁸ International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
 - ⁹ Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sincia, Taipei 11529, Taiwan
 - ¹⁰ Advanced Materials and Applications Research Group, Ho Chi Minh University of Technology, 475A Dien Bien Phu Street, Binh Thanh District, Ho Chi Minh City 700000, Vietnam

¹¹ Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt

¹² Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan

¹³ Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan

¹⁴ Faculty of Chemistry, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh 700000, Vietnam.

¹⁵ Department of Physics, National Taiwan University, Taipei 10617, Taiwan

*Corresponding author: <u>chenkh@pub.iams.sinica.edu.tw</u> (K.-H. Chen)

chenlc@ntu.edu.tw (L.-C. Chen)

amrsabbah@ntu.edu.tw (A. Sabbah)

Figure S1. Schematic illustration of photocatalytic NO removal setup.

Figure S2. The most optimized configuration of (a) pristine Bi_2WO_6 (131) and (b) Fe- Bi_2WO_6 (131). The grey, pink, red, and deep yellow spheres represent tungsten (W), bismuth (Bi), oxygen (O), and iron (Fe), respectively.

Figure S3. SEM images of (a) pristine Bi_2WO_6 , and (b-d) xFe- Bi_2WO_6 where x = 1, 1.5, 2, respectively.

Figure S4. (a) Nitrogen adsorption-desorption isotherms, and (b) pore size distribution of Bi_2WO_6 and xFe- Bi_2WO_6 (x = 1, 1.5, 2).

Figure S5. Fourier-transform extended X-ray absorption fine structure (FT-EXAFS) fitting curves of xFe-Bi₂WO₆ (x = 1, 1.5, 2) and FT-EXAFS curves of Fe foil and Fe₂O₃.

Figure S6. Fourier transform of Fe K-edge EXAFS spectra in (a) k, and (b) q space for Fe foil, Fe₂O₃, and the corresponding fitting curves for xFe-Bi₂WO₆ (x=1, 1.5, 2).

Figure S7. XPS survey spectra of Bi_2WO_6 and xFe- Bi_2WO_6 (x=1, 1.5, 2).

Figure S8. High-resolution X-ray photoelectron spectra of Bi₂WO₆, and xFe-Bi₂WO₆ (x=1,

1.5, 2).

Figure S9. Tauc plots for Bi_2WO_6 and $xFe-Bi_2WO_6$ (x=1, 1.5, 2).

Figure S10. UPS spectra of Bi₂WO₆ and xFe-Bi₂WO₆ (x=1, 1.5, 2).

Figure S11. CO_2 adsorption curves for Bi_2WO_6 and $xFe-Bi_2WO_6$.

Figure S12. (a) Fe K-edge XANES, **(b-d)** FT-EXAFS spectra and corresponding fitting curves of Fe foil, Fe_2O_3 , and $1.5Fe-Bi_2WO_6$ before and after stability test for photocatalytic

CO₂ reduction.

Figure S13. Total ion chromatography (**a**) and mass spectrum of (**b**) ¹³C isotope tracing measurement in CO₂ photoreduction over 1.5Fe-Bi₂WO₆ (the inset figures show the zoom region of ¹³CO peak) (**c**) He blank test.

Figure S14. (a) Fe K-edge XANES, (b-d) FT-EXAFS spectra and corresponding fitting curves of Fe foil, Fe₂O₃, and 1.5Fe-Bi₂WO₆ before and after stability test for photocatalytic

NO removal.

Figure S15. The adsorption energy of NO, NO₂, and NO₃⁻ during photocatalytic NO removal on Bi_2WO_6 and Fe- Bi_2WO_6 (131).

Table S1. The Fe content of Fe-Bi₂WO₆ samples was measured by ICP-OES.

Samples	1Fe-Bi ₂ WO ₆	1.5Fe-Bi ₂ WO ₆	2Fe-Bi ₂ WO ₆
Fe amount (wt.%)	0.06	0.11	0.18

	d	(Å)
	Bi-O	W-O (Fe-O)
Bi ₂ WO ₆	2.295	1.864
Fe-Bi ₂ WO ₆	2.268	1.872 (1.898)

Table S2. Computed average bond lengths (d) of pristine Bi_2WO_6 and $Fe-Bi_2WO_6$

Table S3. BET surface area, pore volume, and pore diameter of Bi_2WO_6 and $xFe-Bi_2WO_6$ (x=1, 1.5, 2).

Catalysta	BET surface area	Pore volume	Pore diameter	
Catalysts	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	(nm)	
Bi ₂ WO ₆	70.37	0.32	8.13	
1Fe-Bi ₂ WO ₆	104.93	0.40	5.08	
1.5Fe-Bi ₂ WO ₆	106.33	0.41	6.82	
2Fe-Bi ₂ WO ₆	105.68	0.42	4.46	

Table S4. Structural parameters of $xFe-Bi_2WO_6$ (x=1, 1.5, 2) catalysts obtained from the EXAFS fitting.

	Scattering pair	CN	R(Å)	σ^2	ΔE_0	R-factor
					(eV)	
1Fe-Bi ₂ WO ₆	Fe-O	4.06	2.01	0.0083	-1.58	0.0035
1.5Fe-Bi ₂ WO ₆	Fe-O	4.11	1.99	0.0076	-3.27	0.0061
2Fe-Bi ₂ WO ₆	Fe-O	4.18	1.99	0.0073	-3.34	0.0057

CN: coordination number; R: distance between the absorber and surrounding coordination atoms; σ^2 : Debye-Waller factor to describe the variance due to the thermal and lattice disorder; ΔE_0 : threshold energy correction; R-factor is used to assess the quality of fitting and the smaller value of R-factor the better fitting.

	Bi ₂ WO ₆	1Fe-Bi ₂ WO ₆	1.5Fe-Bi ₂ WO ₆	2Fe-Bi ₂ WO ₆
Work function	3.72	3.56	3.52	3.63
VBM	6.02	6.15	6.17	6.24
Band gap	2.88	2.77	2.74	2.69
CBM	3.14	3.38	3.43	3.55

Table S5. Band levels (vs. vacuum level) were acquired from UPS and UV-Vis DRS results.

* UPS spectra recorded with an incident photon energy of 21.2 eV.

Sample	τ ₁ (ns)	A ₁ (%)	$\tau_2^{}(ns)$	A ₂ (%)	τ _{ave} (ns)
Bi ₂ WO ₆	0.27	24.25	1.53	75.75	1.46
1Fe-Bi ₂ WO ₆	0.22	26.16	1.19	73.84	1.13
1.5Fe-Bi ₂ WO ₆	0.21	22.79	1.12	77.21	1.07
2Fe-Bi ₂ WO ₆	0.26	25.77	1.31	74.23	1.24

Table S6. TRPL fitting parameters for Bi_2WO_6 and $xFe-Bi_2WO_6$ (x=1, 1.5, 2) samples, respectively.

TRPL curves were fitted by bi-exponential decay function and the average lifetimes were calculated by the following **equation S1**:

$$\tau_{ave} = \frac{A_1 \cdot \tau_1^2 + A_2 \cdot \tau_2^2}{A_1 \cdot \tau_1 + A_2 \cdot \tau_2} \tag{S1}$$

	Scattering	CN	R(Å)	σ^2	ΔE ₀	R-factor
	pair				(eV)	
1.5Fe-Bi ₂ WO ₆ before reaction	Fe-O	4.11	1.99	0.0076	-3.27	0.0061
1.5Fe-Bi ₂ WO ₆ after CO ₂ reduction stability test	Fe-O	4.20	1.99	0.0072	-1.63	0.0024

Table S7. Structural parameters of 1.5Fe-Bi₂WO₆ before and after photocatalytic CO₂ reduction stability test acquired from the EXAFS fitting.

Materials	Reaction conditions	Products	Yield of CO ₂ reduction (μmol•g ⁻¹ •h ⁻¹)	Ref.
Bi ₂ WO ₆ /TiO ₂ heterostructures	Flow typeUV illumination	CH ₄	1.06	1
Atomically thin Bi ₂ WO ₆ nanosheets with	• Flow type	СО	7.12	2
hydrophobic and nonpolar surface	• A 300 W Xe lamp	CH ₄	0.63	-
Chlarida Madified Di WO. Nanashasta	• Flow type	СО	1.66	3
Chloride Modified $B1_2 w O_6$ Nanosneets	• 300 W Xenon lamp	CH ₄	0.35	_
2D/2D Bi ₂ WO ₆ /BiOI heterojunctions	 Flow type 500 W Xenon arc lamp with an UV cut-off filter 	CH ₄	2.29	4
2D/2D MXene/Bi ₂ WO ₆	• Batch type	CH ₄	1.78	5
	• A Xe lamp	CH ₃ OH	0.44	-
Atomically dispersed Fe-Bi2WO	Batch type	CO	9 20	This
	Durch type		7.20	study

Table S8. Comparison of the photocatalytic CO₂ reduction yield of previously reported studies and our catalyst.

	Scattering	CN	R(Å)	σ ²	ΔE_0	R-factor
	pair				(eV)	
1.5Fe-Bi ₂ WO ₆ before reaction	Fe-O	4.11	1.99	0.0076	-3.27	0.0061
1.5Fe-Bi ₂ WO ₆ after NO removal stability test	Fe-O	4.18	1.99	0.0073	-3.34	0.0057

Table S9. Structural parameters of 1.5Fe-Bi₂WO₆ before and after photocatalytic NO removal stability test acquired from the EXAFS fitting.

Table S10. Comparison of the photocatalytic NO removal efficiency, the selectivity of the NO₃⁻ product of previously reported

studies and our catalyst.

Materials	Catalyst's dosage	NO conc. (ppb)	Light source	NO removal efficiency (%)	NO ₂ conversion efficiency (%)/(ppb)	NO3 ⁻ selectivity (%)	NO removal stability (%)	Ref.
Oxygen vacancies modified Bi ₂ WO ₆	0.2	550	Visible light	47	-	-	Loss of 10% after 5 cycles	6
$Bi_{12}GeO_{20}$ - Bi_2S_3	0.4	580	Visible light	46	> 5 ppb	96	-	7
Ternary Bi/Bi ₂ O ₃ /Bi ₂ WO ₆ composite	0.2	550	Visible light	55.4	-	-	-	8
Carbonate-intercalated defective Bi ₂ WO ₆	0.2	550	Visible light	55	-	-	Loss of ~13% after 5 cycles	9
Fe(iii) cluster-grafted (BiO) ₂ CO ₃	0.1	550	Visible light	44.1	-	-	-	10
Bi ₂ WO ₆ /BiOI heterostructure	0.2	500	Visible light	40	-	-	-	11
Atomically dispersed Fe- Bi ₂ WO ₆	0.2	500	Visible light	50.4	0.37%/ < 2 ppb	99.6	Loss of 4.3% after 5 cycles	This study

(-) means did not mentioned or state the specific numbers.

Reference

- L. Collado, M. Gomez-Mendoza, M. García-Tecedor, F. E. Oropeza, A. Reynal, J. R. Durrant, D. P. Serrano and V. A. de la Peña O'Shea, *Applied Catalysis B: Environmental*, 2023, **324**, 122206.
- Y. Liu, D. Shen, Q. Zhang, Y. Lin and F. Peng, *Applied Catalysis B: Environmental*, 2021, 283, 119630.
- Y. Y. Li, J. S. Fan, R. Q. Tan, H. C. Yao, Y. Peng, Q. C. Liu and Z. J. Li, ACS Appl Mater Interfaces, 2020, 12, 54507-54516.
- X. Y. Kong, W. Q. Lee, A. R. Mohamed and S.-P. Chai, *Chemical Engineering Journal*, 2019, **372**, 1183-1193.
- S. Cao, B. Shen, T. Tong, J. Fu and J. Yu, *Advanced Functional Materials*, 2018, 28, 1800136.
- W. C. Huo, X. a. Dong, J. Y. Li, M. Liu, X. Y. Liu, Y. X. Zhang and F. Dong, *Chemical Engineering Journal*, 2019, 361, 129-138.
- F. Chang, X. Wang, C. Yang, S. Li, J. Wang, W. Yang, F. Dong, X. Hu, D.-g. Liu and Y. Kong, *Composites Part B: Engineering*, 2022, 231, 109600.
- 8. W. He, Y. Sun, G. Jiang, H. Huang, X. Zhang and F. Dong, *Applied Catalysis B: Environmental*, 2018, **232**, 340-347.
- 9. W. Huo, W. Xu, T. Cao, X. Liu, Y. Zhang and F. Dong, *Applied Catalysis B: Environmental*, 2019, **254**, 206-213.
- X. Feng, W. Zhang, Y. Sun, H. Huang and F. Dong, *Environmental Science: Nano*, 2017, 4, 604-612.

 L. Wang, K. Xu, W. Cui, D. Lv, L. Wang, L. Ren, X. Xu, F. Dong, S. X. Dou, W. Hao and Y. Du, *Advanced Functional Materials*, 2019, 29, 1808084.