1	Supplementary Information				
2	Thermodynamic assessment of Gd-doped CeO ₂ for				
3	microwave-assisted thermochemical reduction				
4 5	Dongkyu Lee, ^{‡a} Jaemin Yoo, ^{‡b} Gunsu S. Yun ^{*b,c} and Hyungyu Jin ^{*a,d}				
6 7	^a Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea				
8 9	^b Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea				
10 11	^c Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea				
12 13 14	^d Adjunct Professor, Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, Republic of Korea				
15 16					
17	‡D. Lee and J. Yoo contributed equally to this work				
18 19	* Corresponding authors: hgjin@postech.ac.kr (H. Jin), gunsu@postech.ac.kr (G. S. Yun)				

1 S1. Microwave power transfer from source to sample-loaded cavity

In typical electric circuit analysis, lumped elements are used. This means that the components 2 are not affected by the physical size of the circuit. However, suppose the wavelength of the 3 high-frequency (such as RF, microwave) power source is smaller or similar to the physical size 4 of the circuit (considered distributed elements). In that case, the voltage and current can vary 5 significantly in amplitude and phase along the line length. Therefore, if these characteristics 6 are not considered, the microwave signal will be reflected from the load, resulting in a decrease 7 in the power reaching the load. Transmission line theory is utilized for the efficient delivery of 8 microwave power to load.1 9

$$Return Loss = -20\log(|\Gamma|) = -S_{11}(f)$$
(S1)

$$P_{eff}(f) = P(1 - |S_{11}(f)|^2)$$
(S2)

$$f_0 \equiv f_{nml} = \frac{c}{2\pi\sqrt{\varepsilon_r\mu_r}} \left(\left(\frac{P_{nm}^{TE}}{r} \right)^2 + \left(\frac{l\pi}{h} \right)^2 \right)^2$$
(S3)

10 Equation (S1) shows the expression for the return loss of the reflection coefficient Γ , where Γ corresponds to the voltage ratio of reflected voltage (V_{ref}) divided by incident voltage (V_{inc}) . 11 $-S_{11}$ expressed as a function of frequency is equivalent to return loss and can be measured with 12 a network analyzer. Additionally, this value can be obtained from a spectrum analyzer for a 13 single frequency used in this paper. The effective microwave power $P_{eff}(f)$ delivered to the 14 sample-loaded cavity can be expressed as equation (S2), where P represents the amplified 15 microwave output power. Meanwhile, the resonant frequency f_0 for the cylindrical cavity is 16 defined only in TE (Transverse Electric) mode in this work, as shown in equation (S3). The 17 term c is the speed of light, ε_r is the relative permittivity of the filled medium inside the cavity, 18 19 μ_r is the relative permeability of the filled medium inside the cavity, and P_{nm}^{TE} is m^{th} zero of the 20 nth Bessel function. The values r and h represent the radius and height of the cavity,

1 respectively. Due to the nature of the resonance mode, when a driving frequency f_d different from f_0 is applied to the cavity, the reflection ratio of power increases ($|S_{11}(f)|$ increases), resulting in a decrease in the power transfer ratio $(1 - |S_{11}(f)|^2)$ to the cavity. For the case of literature^{2,3} and our work, when the temperature of the metal oxides is increased via microwave heating, f_0 of the sample-loaded cavity decreases. Therefore, $P_{eff}(f)$ is maximized by tracking the continuous shift of f_0 and matching f_d to f_0 .

δ	1000/ <i>T</i>	$ln(P(O_2))$	Slope	$\frac{\Delta H_0}{(kJ/mol_0)}$
	1.45	-8.52		
0.0045	1.38	-5.00	-45.86	190.64
0.0043	1.34	-4.49	-14.45	60.08
	1.19	-2.28	-14.66	60.93
	1.40	-8.52		
0.0065	1.30	-5.00	-34.89	145.03
0.0003	1.25	-4.49	-11.05	45.92
	1.09	-2.28	-13.70	56.95
	1.35	-8.52		
0.0085	1.23	-5.00	-29.21	121.53
0.0085	1.18	-4.49	-9.38	39.00
	1.01	-2.28	-13.19	54.82
	1.30	-8.52		
0.0105	1.17	-5.00	-25.79	107.20
	1.11	-4.49	-8.42	35.02
	1.26	-8.52		
0.0125	1.11	-5.00	-23.54	97.85
	1.05	-4.49	-7.83	32.53
	1.22	-8.52		
0.0145	1.06	-5.00	-21.98	91.37
	0.99	-4.49	-7.43	30.89

Table S1 Enthalpy changes based on slope analysis between consecutive data points in Figure

2 7 of the main text. The slope represents the $\Delta \ln (P(O_2))/\Delta (1000/T)$ obtained from the data 3 points of the previous and the corresponding rows.

References

- 1. Pozar, D. M. Microwave Engineering. (Wiley, Hoboken, NJ, 2012).
- Catala-Civera, J. M. *et al.* Dynamic Measurement of Dielectric Properties of Materials at High Temperature During Microwave Heating in a Dual Mode Cylindrical Cavity. *IEEE Trans. Microwave Theory Techn.* 63, 2905–2914 (2015).
- 3. Serra, J. M. *et al.* Hydrogen production via microwave-induced water splitting at low temperature. *Nat Energy* **5**, 910–919 (2020).