Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Cobalt oxide/cerium oxide heterogeneous interfaces as advanced durable and bifunctional electrocatalyst for robust industrial relevant overall water splitting

Akbar I. Inamdar^{*a}, Amol S. Salunke^a, Jun Ho Seok^b, Harish S. Chavan^a, Nabeen K. Shrestha^a, Sang Uck Lee^{*b}, Sangeun Cho^{*a}, Hyunsik Im^a

^aDivision of System Semiconductor, College of AI Convergence, Dongguk University, Seoul, 04620, Republic of Korea.

^b School of Chemical Engineering, Sungkyunkwan University, Suwon 16149, Republic of Korea

*Corresponding Authors

*E-mail: akbarphysics2002@gmail.com (A. I. I.), suleechem@skku.edu (S. U .L.), sangeun.c@dongguk.edu (S. C.)

Table S1. Literature survey and comparison of various electrocatalysts in terms of the OER, HER, and cell voltages required to reach a current density of 10 mAcm⁻².

Sr. No	Catalysts	Cell Voltage (V) @10mAcm ⁻²	η (n @10m/ In KOH c	nV) Acm ⁻² pr NaOH	Ref.
		KOH or NaOH	OER	HER	
1.	NiFe LDH-NS@DG10 hybrid catalyst	1.5 @20mAcm ⁻² (1 M KOH)	210 @10mAcm ⁻²	115 @20mAcm ⁻²	[1]
2.	Nonprecious CuFe Composite	1.64 (1 M KOH)	218	158	[4]
3.	defect-rich ultrathin Co(OH) ₂ (D-U-Co(OH) ₂)	-	223	-	[8]
4.	Nanosized CoNi Hydroxide@Hydroxysulfide	-	274 (0.10 M KOH)	-	[9]
5.	Boronized NiFe	-	309 (1 M KOH)	-	[10]
6.	V-doped Ni_3S_2 nanowire	-	-	39 (1 M KOH)	[12]
7.	Ru single-atom on cobalt-iron bimetallic-alloy encapsulated by graphitic carbon (RuSACoFe ₂ /G)	1.48 (1M KOH)	180 129		[14]
8.	CoN nanowire	-	290 (1 M KOH)	-	[15]
9.	Highly densed NiS-CoS nanorod arrays	1.47 (1 M KOH)	F170	102	[16]
10.	nickel iron diselenide	-	195 (1 M KOH)	-	[17]
11.	Carbon coated porous nickel phosphides nanoplates	-	300 (1 M KOH)	-	[18]
12.	Fe-doped Ni ₃ Se ₄ ultrathin nanosheets	1.60 (1M KOH)	225	173	[19]
13	Fe-doped Co ₃ O ₄ hierarchical NPs composed of ultrathin nanosheets	-	262 -		[21]
14.	Au-doped Co-Ni Hydroxide	1.75 (1M NaOH) 1.9 (6 M NaOH)	340	200	[25]
15.	Anion insertion enhanced NiCeO _x H _v	-	177	-	[26]
16.	Nickel-Chromium Layered Double Hydroxide (NiCr-LDH)	1.55 (1M KOH)	319 @ 100mAcm ⁻²	138 @ 100mAcm ⁻²	[27]

17	NiFe and CoFe -LDHs	-	348 (NiFe) 404 (CoFe)	-	[28]
18.	Self-supported NiMo-based nanowire arrays	1.507 (1M KOH)	230	22	[29]
19.	N-doped graphene layer coated Fe-Ni alloy nanoparticles encapsulated within an N-doped carbon hollow nanobox	1.701 (1M KOH)	270	201	[30]
20.	Phase-pure pentlandite Ni _{4.3} Co _{4.7} S ₈ binary sulfide	1.67 (1M KOH)	133.8 @20mAcm ^{_2}	148 @10mAcm ^{_2}	[31]
21.	Nickel-Iron/Nanocarbon Hybrids	1.58 (1M KOH)	330	219	[32]
22.	Ni(OH) ₂ /Ni ₃ S ₂ hybrid nanosheet arrays	1.57 (1M KOH)	270 @20mAcm ⁻²	200	[33]
23.	NiCo-LDH	-	293 (0.1M KOH)	-	[34]
24.	Enabling and Inducing Oxygen Vacancies in Se@CoFe-LDH	-	251 1M KOH @ 50mAcm ⁻²	222 0.5M H ₂ SO ₄ 50mAcm ⁻²	[35]
25.	Ce-Doped NiFe -LDH	-	227	-	[36]
26.	Bimetallic iron-iridium alloy nanoparticles/NF (FeIr/NF)	1.48 (1M KOH)	200 @ 20mAcm ⁻²	16.6 @ 20mAcm ⁻²	[37]
27.	FeNiSSe nanotube	1.56 (1M KOH)	213	91.2	[38]
28.	CoNiP-CoNi alloy	1.76 (1M KOH)	300	150	[39]
29.	Ni-Co-Fe mixed sulfide ultrathin nanosheets on Ni nanocones	1.54 (1M KOH)	207	106	[40]
30.	porous Co _{0.75} Ni _{0.25} (OH) ₂ nanosheets	1.56 (1M KOH)	235	94	[41]
31.	Co–Ni–B	1.72 (1M KOH)	313	205	[42]
32.	NiCo-LDH	1.66 (1M KOH)	271	162	[43]
33.	p-NFNR@Ni-Co-P	1.62 (1M KOH)	272	125	[44]
34.	Ni–Co–P	1.62 (1M KOH)	270	107	[45]
35.	Co(OH) ₂ @NCNTs	1.72 (1M KOH)	270	170	[46]
36.	Mo-NiCo ₂ O ₄ /Co _{5.47} N/NF	1.56 (1M KOH)	270 @50mAcm ⁻²	170 @50mAcm ⁻²	[47]

37.	nickel–cobalt bimetal phosphide	1.59 (1M KOH)	245	129	[48]
38.	NiV LDH	-	200	-	[79]

Fig. S1. Low-magnification SEM images of (a) $Co(OH)_{2,}$ (b) $Co_{0.85}Ce_{0.15,}$ (c) $Co_{0.50}Ce_{0.50,}$ (d) CeO_{2} .

Fig. S2. (a) Line-scanning profiles of O, Ce and Ce along the line in the STEM image (scale bar is 75nm), (b, c) EDX elemental analysis of the Co_{0.85}Ce_{0.15} showing its chemical composition characteristics.

Element	Wt%	Atomic %
0	25.38	64.67
Со	33.99	23.51
Ce	40.63	11.82

Table S2. Elemental analysis using EDAX for the sample $Co_{0.85}Ce_{0.15}$.

Table S3 Amount of the Co and Ce in percentage determined via ICP-MS measurements

	59 Co [He]	140 Ce [No gas]		
Sample Name	Sample NameConcentration $ppm(\mu g/g)$		Concentration <i>ppm(µg/g)</i>	RSD (%)	
Co _{0.95} Ce _{0.05}	103180.892	3.5	123897.332	0.3	
Co _{0.85} Ce _{0.15}	27528.358	1.1	86966.297	0.1	
Co _{0.75} Ce _{0.25}	11861.818	0.6	92447.590	1.3	
Co _{0.50} Ce _{0.50}	95243.324	0.3	9433.036	1.0	

Fig. S3. Variation in the Ce oxidation state in $Co_{1-x}Ce_x$, (where x = 0.05, 0.15, 0.25, and 0.50) and CeO₂ catalysts analysed using XPS.

Fig. S4. Enlarged view of the *iR*-corrected LSV curves of $Co(OH)_2$, $Co_{1-x}Ce_x$ (where x = 0.15 and 0.50), and CeO_2 catalysts recorded in a 1M KOH electrolyte at a scan rate of 5 mVs⁻¹ for the OER.

Fig. S5. *iR*-corrected LSV curves for the Ni foam in comparison with $Co_{0.85}Ce_{0.15}$ to determine the contribution of Ni foam to OER activity.

1.1 Conversion equations for an SCE to an RHE

$$E(RHE) = E_{1(SCE)} + E_{0(SCE)} + 0.0591pH$$
(1)

where E_1 is the actual measured potential and E_0 is the standard potential for the SCE (0.241 V). The pH of the 1 M KOH electrolyte was 13.68.

$$E_{(RHE)} = E_{1(SCE)} + 0.241 + 0.0591^{*}(13.68)$$
$$E_{(RHE)} = E_{1(SCE)} + 0.241 + 0.809$$
$$E_{(RHE)} = E_{1(SCE)} + 1.05$$

Table S4. Electrochemical parameters including the overpotential at different current densities and Tafel slopes for $Co(OH)_2$, $Co_{1-x}Ce_x$, and CeO_2 catalysts in relation to the OER.

Sample	Overpote	ential (mV)	Tafel slope	Mass activity
			(mV dec⁻¹)	(Ag ⁻¹)
	@100mAcm ⁻²	@500mAcm ⁻²		
Co(OH) ₂	393.4	478.9	109.7	1.95
Co _{0.85} Ce _{0.15}	291.6	368.1	85.02	11.77
Co _{0.50} Ce _{0.50}	324.1	429.6	120.0	8.76
CeO ₂	378.0	518.0	165.7	5.60

1.2 Electrochemical surface area analysis of the Co_{1-x}Ce_xO catalysts

The ECSA of the Co(OH)₂, Co_{1-x}Ce_x, and CeO₂ catalysts was estimated using CV curves measured at different scan rates in the non-Faradaic voltage region. **Fig. S6(a)** presents the CV curves for catalysts recorded at a scan rate of 55, 60, 70, 75, 80, 85, 90, 95, and 100 mVs⁻¹. The ECSA of the catalyst was calculated using Eq. (2):^[S1,S2]

$$ECSA = C_{dl} / C_s$$
⁽²⁾

where C_S is the specific capacitance in an alkaline medium (0.040 mF cm-2 for the KOH electrolyte) and C_{dl} is the specific capacitance of the double-layer region. The slope of the capacitive current (Δj), measured at a non-Faradaic voltage of 0.05 V versus the scan rate (**Fig. S6b**), was used to obtain the ECSA of the catalyst. The double-layer capacitance and ECSA of the Co_{1-x}Ce_x samples are presented in **Table S5**. To accurately evaluate the intrinsic OER catalytic activity, we normalized the LSV curves for Co(OH)₂, Co_{1-x}Ce_x, and CeO₂ catalysts by the ECSA.

Table S5. Estimation of the double-layer capacitance and ECSA from the CV curves recorded at different scan rates in the non-Faradaic voltage region for mixed phase $Co(OH)_2$, $Co_{1-x}Ce_x$ oxides, and CeO_2 .

	Double-layer	
Sample	capacitances	ECSA (cm ²⁾
	(µF cm⁻²)	
Co(OH) ₂	0.208	5.2
Co _{0.85} Ce _{0.15}	0.300	7.5
Co _{0.50} Ce _{0.50}	0.192	4.8
CeO ₂	0.234	5.85

Fig. S6. (a) CV curves for $Co(OH)_2$, $Co_{1-x}Ce_{x}$ (where x = 0.15, and 0.50) and CeO_2 catalysts recorded at a scan rate of 55, 60, 65, 70, 75, 80, 85, 90, 95 and 100 mVs⁻¹.

Fig. 6(b). Slope of the capacitive current (Δj) measured at a non-Faradaic voltage of 0.05 V versus the scan rate.

Fig. S7. The LSV curves of the $Co(OH)_2$, $Co_{1-x}Ce_x$, and CeO_2 catalysts in which the current density is normalized with the ECSA values.

1.3 Electrochemical impedance spectroscopy analysis of the Co_{1-x}Ce_x catalysts

Electrochemical impedance spectroscopy (EIS) measurements were carried out to elucidate the electrocatalytic activity of the Co(OH)₂, Co_{1-x}Ce_x, and CeO₂ catalysts. **Figure S8** presents the measured Nyquist plots for the Co_{1-x}Ce_x, pure Co(OH)₂, and pure CeO₂ catalysts and the corresponding equivalent circuit diagram. The Nyquist plots exhibited a small semi-circle in the high-frequency region and a straight line in the lowfrequency region, which were associated with the charge-transfer resistance (R_2) and Warburg impedance, respectively. The Nyquist curves were modelled using the equivalent circuit diagram (**Fig. S8**), in which R_1 is the solution resistance, R_2 is the charge-transfer resistance, and W_0 is the Warburg impedance. The values for R_1 and R_2 estimated from the Nyquist plots are presented in **Table S6**. It was found that Co_{0.85}Ce_{0.15} had the lowest charge-transfer resistance (0.087 Ω), which was much lower than that of the other catalysts. This low charge-transfer resistance and the fast kinetics of Co_{0.85}Ce_{0.15} were in accordance with its superior OER activity.

Fig. S8. Nyquist plots (normalized to zero- on the x-axis) for the $Co(OH)_2$, $Co_{1-x}Ce_x$ (where x =0.15, and 0.50), and CeO_2 catalysts recorded at a 0-bias voltage and the equivalent circuit diagram used to fit the curves.

Sample	$R1~(\Omega)$	<i>R2</i> Ω
Co(OH) ₂	0.91	0.12
Co _{0.85} Ce _{0.15}	0.87	0.087
Co _{0.50} Ce _{0.50}	1.07	0.33
CeO ₂	0.92	0.56

Table S6. EIS fitting parameters for the $Co(OH)_2$, $Co_{1-x}Ce_x$ (where x = 0.15, and 0.50), and CeO_2 catalysts.

Fig. S9. Magnified view of the *iR*-corrected LSV curves recorded in a 1M KOH electrolyte at a scan rate of 5 mVs⁻¹ for the HER for the Co(OH)₂, Co_{1-x}Ce_x (where x = 0.15, and 0.50), and CeO₂ catalysts.

	Overpotential	Overpotential	Tafel slope
Sample	(mV)	(mV)	
	@ 10mAcm ⁻²	@ 400mAcm ⁻²	(mv dec)
Co(OH) ₂	155.6	489.9	153.8
Co _{0.85} Ce _{0.15}	76.27	301.1	92.4
Co _{0.50} Ce _{0.50}	163.8	354.0	142.7
CeO ₂	169.6	491.6	154.7

Table S7. Comparison of the HER overpotential and Taffel slope of the Co(OH)₂, Co₁₋ $_{x}Ce_{x}$ (where x = 0.15, and 0.50), and CeO₂ catalysts.

Table S8. The concentrations of the Co and Ce species detected after the stability tests via ICP-MS analysis

	56 Fe [H2]		59 Co [He]		140 Ce [No gas]	
Electrolyte	Concentration <i>ppm(µg/g)</i>	RSD	Concentration <i>ppm(µg/g)</i>	RSD	Concentration <i>ppm(µg/g)</i>	RSD
Before stability KOH	0.027	5.6	0.003	7.8	ND	
After stability KOH	0.026	1.9	0.008	3.8	ND	

Fig. S10. HER polarization curves of the $Co_{0.85}Ce_{0.15}$ catalyst with Pt and Graphite (Gr) as a counter electrode.

Fig. S11. Without iR-correction OER and HER polarization curves of the $Co_{0.85}Ce_{0.15}$, RuO₂/NF and 20 % Pt/C in 1M KOH electrolyte.

Fig. S12. Chronopotentiometry stability curve (without iR- correction) of best performing $Co_{0.85}Ce_{0.15}$ sample at current density of 500-mA cm⁻² for 50 hours of continuous operation

Fig. S13. Influence of long-term OER and HER measurements on the structural properties of Co_{0.85}Ce_{0.15} monitored using **(a)** XRD and **(b)** Raman analysis before and after OER/HER testing.

Fig. S14. Surface chemical oxidation states for $Co_{0.85}Ce_{0.15}$ analysed using XPS measurements before and after OER/HER testing: **(a)** deconvoluted Co 2p, **(b)** deconvoluted Ce 3d, and (c) deconvoluted O 1s.

Fig. S15. Morphological analysis of $Co_{0.85}Ce_{0.15}$ after long-term OER and HER stability testing: (a) before testing, (b) after the OER, and (c) after the HER.

Fig. S16. Enlarged view of the polarization curves for the electrolysers fabricated using $Co(OH)_2 \|Co(OH)_2$, $Co_{1-x}Ce_x \| Co_{1-x}Ce_x$, (where x = 0.15, and 0.50) and $CeO_2 \|CeO_2$ catalysts.

Fig. S17. Cell voltage required to reach a current density of 10 mAcm⁻² and the maximum current density obtained for the Co(OH)₂, Co_{1-x}Ce_x, and CeO₂ catalysts.

Sample	Cell Potential (V) @ 10mAcm ⁻²	Cell Potential (V) @ 500mAcm ⁻²	Cell Potential (V) @ 1000mAcm ⁻²	
Co(OH) ₂	Co(OH) ₂ 1.66		-	
Co _{0.85} Ce _{0.15}	1.56	2.05	2.27	
Co _{0.50} Ce _{0.50}	1.65	2.18	-	
CeO ₂	1.72	-	-	

Table S9. Full-cell parameters obtained for the electrolyser fabricated using the $Co(OH)_2$, $Co_{1-x}Ce_x$ (where x = 0.15, and 0.50), and CeO_2 catalysts

Fig. S18 Full-cell performance of $Co_{0.85}Ce_{0.15}$ compared with pure $Co(OH)_2$ and CeO_2 at a current density of 0.01, 0.1, 0.5, and 1.0 Acm⁻².

Fig. S19. Image of the experimental setup used to estimate the Faradaic efficiency by collecting the hydrogen and oxygen gas evolved at the cathode and anode, respectively.

Tal	ole S10.	Cell voltage	required to	o obtain a curr	ent density	of 10,	500,	and 100	0 mAcm ⁻²
at	different	temperature	es for the	electrolysers	fabricated	using	the	Co _{1-x} Ce	_∗ catalysts
(wh	ere x =	0.05, 0.15, 0	.25, and 0	.50).					

Temperature (°C)	Cell Potential (V) @ 10 mAcm ⁻²	Cell Potential (V) @ 500 mAcm ⁻²	Cell Potential (V) @ 1000 mAcm ⁻²
25	1.56	2.05	2.27
35	1.53	1.98	2.17
45	1.50	1.94	2.11
55	1.48	1.90	2.07

References

- [S1] A. I. Inamdar, H. S. Chavan, S. M. Pawar, H. Kim. H. Im, *Int. J. Energy Res.* 2020, 44, 1789-1797.
- [S2] G. Zhang, Y. Meng, B. Xie, Z. Ni, H. Lu, S. Xia, Appl. Catal. B: Environ. 2021, 296, 120379.