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Characterization

FTIR spectra were collected on a Bruker Tensor 27 FTIR spectrophotometer with a resolution of 4 

cm-1 by using the KBr disk method. 13C nuclear magnetic resonance (NMR) spectra were examined 

by using an INOVA 500 instrument with DMSO-d6 and CDCl3 as the solvent and TMS as the external 

standard. Chemical shifts are reported in parts per million (ppm). Solid-state 13C NMR was measured 

by JEOL JNM-LA300 spectrometer and standard CPMAS probe at 75.577 MHz. The thermal 

stabilities of the samples were performed by using a TG Q-50 thermogravimetric analyzer under a N2 

atmosphere; the sample (ca. 5 mg) was put in a Pt cell with a heating rate of 20 °C min–1 from 100 to 

800 °C under a N2 flow rate of 60 mL min-1. Solid-state 13C NMR was measured by JEOL JNM-

LA300 spectrometer and standard CPMAS probe at 75.577 MHz. The morphologies of the polymer 

network samples were examined by Field emission scanning electron microscopy (FE-SEM; JEOL 

JSM7610F) and transmission electron microscope (TEM) using a JEOL-2100 instrument at an 

accelerating voltage of 200 kV. X-ray Photoelectron Spectroscopy (XPS): XPS was measured on a 

X-ray Photoelectron Spectrometer System (Thermo Scientific). The X-ray monochromator used 

micro-focused Al-Kα radiation. Surface area and porosity measurements of samples weighing 

approximately 40-60 mg were conducted using the BEL MasterTM/BEL simTM (version 3.0.0) 

apparatus. Nitrogen (N2) adsorption and desorption isotherms were generated by gradually exposing 

the samples to ultrahigh-purity N2 gas, reaching pressures of up to about 1 atmosphere, while 

maintaining a temperature of 77 K in a liquid nitrogen bath. Before these measurements, the samples 

underwent a degassing process at 150 °C for 8 h. The instrument's software was utilized to calculate 

surface parameters using the BET adsorption models. Furthermore, the pore size of the prepared 

samples was determined using nonlocal density functional theory (NLDFT).
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Electrochemical Analysis

Working Electrode Cleaning: Before use, the glassy carbon electrode (GCE) was polished several 

times with 0.05-µm alumina powder, washed with EtOH after each polishing step, cleaned through 

sonication (5 min) in a water bath, washed with EtOH, and then dried in air.

Electrochemical Characterization: The electrochemical experiments were performed in a three-

electrode cell using an Autolab potentiostat (PGSTAT204) and 1 M KOH as the aqueous electrolyte. 

The GCE was used as the working electrode (diameter: 5.61 mm; 0.2475 cm2); a Pt wire was used as 

the counter electrode; Hg/HgO (RE-1B, BAS) was the reference electrode. All reported potentials 

refer to the Hg/HgO potential. A slurry was prepared by dispersing the Py-Ph-TzTz CMP or Py-Th-

TzTz CMP (50%), carbon black (40%), and Nafion (10%) in a mixture of (EtOH/ H2O) (200 µL: 800 

µL) and then sonicated for 2 h. A portion of this slurry (10 µL) was pipetted onto the tip of the 

electrode, which was then dried in air for 30 min before use. The electrochemical performance was 

studied through CV at various sweep rates (5–200 mV s–1) and through the GCD method in the 

potential range of +0 to -1 V at varying current densities (0.5-20 A/g) and CV at different sweep rates 

(5-200 mV/sec). The equation below was used to compute the specific capacitance based on the CV 

curves: 

𝑄 =
∫𝐼𝑑𝑉

2  𝑚 𝑣 
        

The specific capacitance was calculated from the GCD data using the equation:

Cs = (I∆t)/(m∆V)

Where Cs (F g–1) is the specific capacitance of the supercapacitor, I (A) is the discharge current, ΔV 

(V) is the potential window, Δt (s) is the discharge time, and m (g) is the mass of the NPC on the 

electrode. 
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Electrochemical Analysis in Two-Electrode Symmetric Supercapacitor System

The slurry prepared by mixing Py-Ph-TzTz CMP or Py-Th-TzTz CMP, carbon black, and Nafion (10 

wt. %) was coated onto a flexible Kuraray carbon paper (0.1 mm in thickness) with an effective area 

of 1 cm × 1 cm and then dried at 100 °C overnight in a vacuum oven. The mass loading of active 

material on the current collector was 0.8 mg cm‒2. The two working electrodes were separated with 

filter paper and infiltrated with potassium hydroxide (1 M) aqueous solution.

The specific capacitance was calculated from galvanostatic charge-discharge experiments using the 

following equation:

                                                          Cs = 2 x (I∆t)/(m∆V) 

Where Cs (F/g) is the specific capacitance of the supercapacitor, I (A) is the discharge current, ΔV 

(V) is the potential window, Δt (s) is the discharge time, and m (g) is the mass of porous carbon on 

the one electrode. The energy density (E, Wh kg–1) and power density (P, W kg–1) were calculated 

using the equations.

                                                            E = C(ΔV)2/(4 7.2)

                                                                   P = E/(t/3600)
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Figure S1. FTIR spectrum of Py-Ph-4CHO.
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Figure S2. 1H-NMR spectrum of Py-Ph-4CHO.



8

100 200 300 400 500 600 700
0

20

40

60

80

100
W

ei
gh

t R
es

id
ue

 (%
)

Temperature (oC)

Figure S3. TGA spectrum of Py-Ph-4CHO.
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Figure S4. FTIR spectrum of Py-Th-4CHO.
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Figure S5. 1H-NMR spectrum of Py-Th-4CHO.
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Figure S6. 13C-NMR spectrum of Py-Th-4CHO.
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Figure S7. TGA traces of Py-Th-4CHO.
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Figure S8. TGA traces of Py-Ph-4CHO, Py-Th-4CHO, Py-Ph-TzTz CMP, and Py-Th-TzTz CMP.
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Figure S9. (a) N2 adsorption-desorption isotherm and (b) pore size distribution curves of Py-Ph-TzTz 

CMP and Py-Th-TzTz CMP. 
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Figure S10. Water Contact angle (WCA) measurements for (a) Py-Ph-TzTz CMP and (b) Py-Th-

TzTz CMP.
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Figure S11. Specific capacitance values of Py-Ph-TzTz CMP and Py-Th-TzTz CMP were calculated 

from CV results.



17

Figure S12. (a) Plots of reciprocal of areal capacitance (C−1) against the square root of scan rate (v0.5), 

(b) plots of gravimetric capacitance against the reciprocal of the square root of scan rate (v−0.5), and 

(c, d) the percentage capacitance contribution of (a, c) Py-Ph-TzTz CMP and (b, d) Py-Th-TzTz CMP.
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Figure S13. EIS fitting of (a) Nyquist plot of Py-Ph-TzTz and Py-Th-TzTz CMPs, (b) equivalent 

fitted circuit of the Py-Th-TzTz CMP, (c) Bode plot of frequency-dependant resistance, and (d) Bode 

plot of frequency-dependant phase angles for the symmetric device of Py-Ph-TzTz CMP and Py-Th-

TzTz CMP.
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Table S1. TGA data of Py-Ph-4CHO, Py-Th-4CHO, Py-Ph-TzTz CMP, and Py-Th-TzTz CMP.

Sample Td5% (oC) Td10% (oC) Char Yield 
(wt.%)

Py-Ph-4CHO 320 340 31
Py-Th-4CHO 289 384 52

Py-Ph-TzTz CMP 371 502 67
Py-Th-TzTz CMP 260 352 63

Table S2. The atomic weight percentages of carbon (C), nitrogen (N), and sulfur (S) atoms in the Py-
Ph-TzTz CMP and Py-Th-TzTz CMP.

Table S3. The XPS fitting data of  Py-Ph-TzTz CMP and Py-Th-TzTz CMP.

Table S4. A comparison of the supercapacitor performance between Py-Ph-TzTz CMP and Py-Th-
TzTz CMP in three-electrode systems using previously described electrodes

Electrode Capacitance Ref.

Py-Ph-TzTz CMP 464 F g–1 at 1 A g–1 This work

Py-Th-TzTz CMP 625 F g–1 at 1 A g–1 This work

Cz-Cz CMP 43.70 F g–1 at 0.5 A g–1 S1
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Cz-TP CMP 67.38 F g–1 at 1 A g–1 S1

Pure AQ 42 F g–1 at 1 A g–1 S2

TPE-DDSQ-POIP 22 F g-1 at 1 A g-1 S3

Car-DDSQ-POIP 23 F g-1 at 1 A g-1 S3

HPC-0 48 F g-1 at 1 A g–1 S4

H-THAQ 15 F g–1 at 1 A g–1 S5

CoPc-CMP 13.8 F g-1 at 1 A g-1 S6

Py-Ph-BDT CMP 429 F g-1 at 1 A g-1 S7

Py-DSDA-COP/SWCNTs 171 F g-1 at 1 A g-1 S8

Py-Ph-Pery-CMP 300 F g-1 at 0.5 A g-1 S9

Try-TPET-BT 157 F g-1 at 0.5 A g-1 S10

P-PT-CMP 400 F g-1 at 0.5 A g-1 S11

Try-Ph-TPE-CMP 245 F g-1 at 0.5 A g-1 S12

Table S5. A comparison of the supercapacitor performance between Py-Ph-TzTz CMP and Py-Th-
TzTz CMP using previously described electrodes (based on symmetric SCs coin cells).

Electrode Capacitance Ref.

Py-Ph-TzTz CMP 108 F g–1 at 1 A g–1 This work

Py-Th-TzTz CMP 226 F g–1 at 1 A g–1 This work

IITR-COF-1 30.5 F g–1 at 0.12 A g–1 S13

PAN/Lignin-800-1//PAN/Lignin-800-

1

58.77 F g–1 at 0.5 A g–1 S14

PDPT-CNT 126 F g–1 at 0.5 A g–1 S15

CoFePBA/P3/CC/AC 161.12 F g-1 at 0.5 A g-1 S16

AQ-NPCs//TN-NPCs 86 F g-1 at 1 A g-1 S17

PCCGNs-1:4 97.1 F g-1 at 0.5 A g–1 S18

PTPA@MWNT-4 216 F g–1 at 1 A g–1 S19

NOSHPCs-1:2:2 134.88 F g-1 at 0.5 A g-1 S20
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