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Fig. S1 SEM images of ml-V2CTx MXene at low (a,b) and high (c,d) magnifications. 

Fig. S1 shows the open and accordion-like morphology for ml-V2CTx at different 

magnifications. Alhabeb et al. compared the HF concentration (30 wt%, 10 wt%, and 5 wt%) 

for the removal of the ‘Al’ atomic layer from the Ti3AlC2 MAX phase and hence concluded 

that the 5 wt% HF is sufficient for the etching of Al atomic layer from the MAX precursor.1 

However, the accordion-like morphology of ml-Ti3C2Tx for 5 wt% etchant is not as prevalent 

as 30 wt% (as per as SEM imaging is concerned). Mixed acid etchant (HF/HCl) was used for 

the synthesis of ml-V2CTx MXene.2 The concentrated HF etchant may introduce a high density 

of defects in V2CTx MXene when compared to a mixed acid etchant (HF/HCl) with a lower 

content of HF. The enlargement of the d-spacing of 5.5 Å (2 ~ 7.34˚, corresponding to a d-

spacing of 12.03 Å) for the ml-V2CTx in comparison with the parent MAX phase is clear 

evidence of etching of ‘Al’ atomic layers. 
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Fig. S2 Thermogravimetric curves with the derivative of weight loss of (a) ml-V2CTx MXene 

powder (blue) and (b) pre-intercalated ml-V2CTx MXene powder (vinous). 

To further characterize the adsorption/intercalation of EMIM-TFSI ionic liquid into ml-

V2CTx MXene, thermogravimetric analysis was done for ml-V2CTx MXene powder (blue) (Fig. 

S2a) and pre-intercalated ml-V2CTx MXene powder (vinous) (Fig. S2b). The characteristic 

decomposition at a temperature of 400 °C is attributed to the EMIM-TFSI, which is not the 

case for the pristine ml-V2CTx MXene (Fig. S2a). In pristine ml-V2CTx MXene, the weight loss 

(up to 10 wt%) at high temperatures (>350 °C) is attributed to the dissociation of surface 

functional groups and also chemisorbed or structural water removal from multilayer powder.2 

However, in the case of the pre-intercalated ml-V2CTx MXene sample, significant weight loss 

of up to 40 wt% is due to the decomposition of EMIM-TFSI besides the residual structural 

water desorption and functional groups decomposition.3 The total weight loss is 30 wt% for 

the decomposition of EMIM-TFSI ionic liquid. Due to the non-volatile nature and low vapor 

pressure of EMIM-TFSI, the typical incorporation of ionic liquid is estimated to be 30 w/w% 

into V2CTx.  
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Fig. S3 Raman spectra of pure solvent (EC/PC/DMC) (red) and 0.8M Ca(TFSI)2 /EC/PC/DMC 

electrolyte (blue),    -- pure solvent,    -- Ca-ion coordinated solvent. 

In Raman spectra of 0.8M Ca(TFSI)2/EC/PC/DMC electrolyte, the peak at 718 cm-1 

corresponds to the solvent mixture (i.e., EC/PC/DMC); however, two additional peaks at 730 

cm-1 and 741 cm-1  correspond to the coordination of Ca-ions with the EC/PC/DMC. The sharp 

peak at 741 cm-1 corresponds to a free TFSI anion in the electrolyte. The characteristic Raman 

signatures of the electrolyte at a concentration of 0.8M Ca(TFSI)2/EC/PC/DMC  are in 

accordance with the reported literature.4 

 

Fig. S4 (a) Cyclic voltammograms of a 3-electrode cell consisting of a mixture of 15 mM 

ferrocene + 0.8 M Ca(TFSI)2/EC/PC/DMC electrolyte at a scan rate of 10 mV s-1. (b) drift of 

the Ag wire reference electrode over 11 hours in electrolyte mixture. 
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Fig. S4 shows the 3-electrode data of Fc+/Fc redox couple with the drift in the potential of the 

Ag wire over 11 hours. The half-wave potential of the ferrocenium/ferrocene redox couple is 

given by 

𝐸𝐹𝑐+/𝐹𝑐 = 
𝐸𝑝,𝑎 +𝐸𝑝,𝑐

2
 

where 𝐸𝐹𝑐+/𝐹𝑐  is the reduction potential of the ferrocenium/ferrocene redox couple, 𝐸𝑝,𝑎  and 

𝐸𝑝,𝑐 are anodic and cathodic peak potentials, respectively. The potential of the Fc+/Fc redox 

couple is 0.12 V vs. Ag wire, and it is 0.4 V vs. SHE.5 Hence the potential of the Ag wire is 

0.27 V vs. SHE. 

 

Fig. S5 The galvanostatic charge-discharge profiles at different current densities (0.05, 0.09, 

0.15, 0.25, 0.55, 0.90, 1.50, 2.50, 5.50, and 9.0 A g-1). 
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Fig. S6 Electrochemical performance of pre-intercalated ml-V2CTx MXene in 0.8M 

Ca(TFSI)2/EC/PC/DMC electrolyte. (a) Coulombic efficiency versus cycle number plot at 

different current densities (0.05, 0.09, 0.15, 0.25, 0.55, 0.90, 1.50, 2.50, 5.50, and 9.0 A g-1). 

(b) Cycling performance of pre-intercalated ml-V2CTx MXene electrode in non-aqueous 0.8M 

Ca(TFSI)2 electrolyte over 1000 cycles (capacity retention of ~54%) at a current density of 9.0 

A g-1 and inset showing the Coulombic efficiency with cycle number. 

 

Fig. S7 (a) Cyclic voltammograms of pre-intercalated ml-V2CTx MXene in 0.8M 

Ca(TFSI)2/EC/PC/DMC electrolyte at various scan rates (0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10 mV s-

1). 
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Fig. S8 CV curves of pre-intercalated ml-V2CTx MXene at (a) 1 mV s-1 and (b) 5 mV s-1 scan 

rates, shaded regions correspond to capacitive contributions (green), that are estimated based 

on k1k2 analysis. 

 

 

Fig. S9 Galvanostatic charge-discharge (GCD) profiles of pre-intercalated ml-V2CTx MXene 

in 0.8M Ca(TFSI)2 /EC/PC/DMC during in-situ XRD measurements. 
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Fig. S10 Top view SEM images of pre-intercalated ml-V2CTx MXene (a) before and (b) after 

cycling the electrode. (c) Attenuated total reflectance (ATR) - FTIR spectra of pure EMIM-

TFSI ionic liquid (red) and 0.8M Ca(TFSI)2/EC/PC/DMC electrolyte before (blue) and after 

(brown) 100 charge/discharge cycles. 

As shown in Fig. S10c, the EMIM+ peak at 1574 cm-1 (C=C stretching) is hardly noticed in the 

electrolyte before and after cycling (highlighted). There is a sharp absorbance peak at 1048 cm-

1 (C-F stretching) corresponding to TFSI- is present in both neat ionic liquid (reference sample) 

and cycled electrolyte (TFSI signature peak is from Ca(TFSI)2). However, the intense peak at 

1763 cm-1 observed in both before and after electrolyte cycling is due to the C=O stretching in 

cyclic and linear carbonate-based solvents. 

 

Fig. S11 Comparison of specific calciation capacities of different reported electrode materials 

with that of pre-intercalated ml-V2CTx MXene (This work). 
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Table S1: Comparison of electrochemical performances of different electrode materials for 

electrochemical storage of Ca-ions. 

S. No. Working 

electrode 

Electrolyte Reversible 

capacity (mAh g-1) 

@ Current density 

(A g-1)/C-rate 

Cycle number/ 

capacity 

retention 

Potential 

window 

References 

1. NVPF 1M Ca(PF6)2 in 

EC/PC 

87 @ 0.01 500/90% 

 

-1 – 1.5 V 

vs AC 

 

6 

2. PEDOT-

V2O5 

1M Ca(ClO4)2 in 

Acetonitrile 

/Water 

157.2 @ 1  7000/90.8% -0.6 – 1.2 V 

vs Ag/AgCl 

 

7 

3. PTCDA 3.5 m Ca(FSI)2 

in 

EC/PC/DMC/E

MC 

75.4 @ 0.1 

 

350/84.7% 0.5 – 3 V 

vs AC 

 

8 

4. MCMB 

(artificial 

graphite) 

0.7 M Ca(PF6)2 

in 

EC:DMC:EMC  

66 @2C 

 

300/94% 3 – 5.3 V 

 

 

9 

5. Graphite 1 m 

Ca(TFSI)2 in 

tetraglyme 

62 @ 0.05 

 

no capacity decay 

during 2000 

cycles 

-1.0 – 1.0 V  

vs SHE 

 

10 

6. Natural 

graphite 

0.5 m (Ca(BH4)2 

in 

dimethylacetami

de 

87 @ 0.1 200/negligible 

degradation 

0.2 – 1.5 V 

vs Ca/Ca2+ 
 

11 

 

Abbreviation: NVPF- Sodium- vanadium fluorophosphate (Na1.5VPO4.8F0.7), Ca(PF6)2- 

Calcium hexafluorophosphate, PEDOT - Poly 3,4-ethylenedioxythiophene, Ca(ClO4)2- Calcium 

perchlorate, PTCDA- 3,4,9,10-perylenetetracarboxylicdianhydride, Ca(FSI)2- Calcium 

bis(fluorosulfonyl)imide, MCMB- mesocarbon microbead, Ca(TFSI)2- Calcium(II) 

Bis(trifluoromethanesulfonyl)imide, Ca(BH4)2- Calcium borohydride. 
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