Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.

Bimetallic-ions co-intercalation to stabilize vanadium-oxygen bond towards high-performance aqueous zinc-ion storage

Yulin Jiang,^a Xia Wen,^a Yinuo Li,^a Yuhang Li,^a Yanan Peng,^a Wang Feng,^a Xiaohui Li,^a Junbo Yang,^a Luying Song,^a Ling Huang,^a Hang Sun^a and Jianping Shi^{*a}

^a The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China. *Email: jianpingshi@whu.edu.cn

Fig. S1 XPS spectra of MgAl-VOH, Mg-VOH, Al-VOH, and pure VOH. The coexistence of Mg and Al signals indicates the successful achievement of MgAl-VOH using the unique bimetallic-ions co-intercalated strategy.

Fig. S2 O 1*s* XPS spectra of MgAl-VOH, Mg-VOH, Al-VOH, and pure VOH. The Al-O and Mg-O peaks are not observed in such samples, implying that Mg²⁺ and Al³⁺ ions are intercalated rather than doped in VOH.

Fig. S3 The morphologies and chemical compositions characterizations of Mg-VOH, Al-VOH, and pure VOH. (a,e,i) SEM images of Mg-VOH, Al-VOH, and pure VOH, showing their nanobelt morphologies. (b,f,j) TEM images of Mg-VOH, Al-VOH, and pure VOH. (c,g,k) EDS mapping images of Mg-VOH, Al-VOH, and pure VOH, revealing their uniform elements distributions. (d,h,l) Atomic resolution TEM images of Mg-VOH, Al-VOH, and pure VOH. The large interlayer spacings are observed in Mg-VOH (1.29 nm) and Al-VOH (1.26 nm) comparing with the pure VOH (0.98 nm).

Fig. S4 The specific surface area calculations for MgAl-VOH, Mg-VOH, Al-VOH, and pure VOH.

Fig. S5 EPR spectra of MgAl-VOH and pure VOH, showing that the oxygen vacancies are not observed after introducing Al^{3+} and Mg^{2+} ions.

Fig. S6 XANES spectra of MgAl-VOH, VOH, V foil, V_2O_5 , and VO_2 , respectively. The existence and low strength of pre-edge in MgAl-VOH indicates the abundant 3*d* electrons of V.

Fig. S7 EXAFS measurement results of MgAl-VOH, VOH, V foil, V_2O_5 , and VO_2 , respectively. The smaller V=O bond length in MgAl-VOH than that in VOH should stabilize the V=O bonds significantly.

Fig. S8 Electrochemical performances of Mg-VOH, Al-VOH, and pure VOH. (a–c) CV curves of Mg-VOH, Al-VOH, and pure VOH in the first three cycles with a scan rate of 0.1 mV s⁻¹. (d–f) Charging and discharging curves of Mg-VOH, Al-VOH, and pure VOH in the first three cycles at a current density of 0.1 A g⁻¹.

Fig. S9 Rate capabilities of MgAl-VOH with different Mg^{2+} and Al^{3+} ions concentrations.

Fig. S10 Rate capabilities of MgAl-VOH with the mass loadings of 1.2, 1.5, 1.8, and 2.0 mg cm^{-2} , respectively.

Fig. S11 Electrochemical kinetics of Mg-VOH, Al-VOH, and pure VOH. (a–c) CV curves of Mg-VOH, Al-VOH, and pure VOH at different scan rates. (d–f) CV profiles of Mg-VOH, Al-VOH, and pure VOH with the capacitive contribution at a scan rate of 1.0 mV s⁻¹. (g–i) Capacitive contributions in Mg-VOH, Al-VOH, and pure VOH at different scan rates.

Fig. S12 The extraction of capacitive contribution for MgAl-VOH, Mg-VOH, Al-VOH, and pure VOH, respectively. (a–d) The *b* values of such four electrodes.

Fig. S13 Zn^{2+} ion diffusion coefficients in Mg-VOH and Al-VOH during the charging and discharging processes.

Fig. S14 EIS results of MgAl-VOH, Mg-VOH, Al-VOH, and pure VOH. The smaller resistance in MgAl-VOH than those in Mg-VOH, Al-VOH, and pure VOH indicates the faster charge transfer.

Fig. S15 In-situ XRD patterns of MgAl-VOH during the charging and discharging processes. The unchanged (110) characteristic peak indicates the high structure stability of MgAl-VOH.

Fig. S16 Ex-situ FTIR of MgAl-VOH at different charging and discharging states. The formation of $Zn_x(OH)_y(CF_3SO_3)_{2x-y} \cdot nH_2O$ by-product confirms the co-de/intercalation mechanism of Zn^{2+}/H^+ ions.

Fig. S17 EDS mapping images of MgAl-VOH after discharging to 0.2 V, reconfirming the code/intercalation mechanism of Zn^{2+}/H^+ ions.

Fig. S18 EDS mapping images of MgAl-VOH at the initial state, showing the uniform distributions of Mg, Al, V, and O elements.

Fig. S19 EDS mapping images of MgAl-VOH after charging to 1.4 V, revealing its robust structure.

Fig. S20 The optimized atomic models of MgAl-VOH and pure VOH, respectively.

Fig. S21 The migration pathways of Zn^{2+} ions in MgAl-VOH and pure VOH, respectively.

Sample	Element	Content	
	Mg	1.0%	
MgAl-VOH	Al	0.8%	
	V	42.2%	
Μσ-VOH	Mg	1.2%	
1115 1 011	V	45.8%	
A1-VOH	Al	0.8%	
	V	45.4%	
VOH	V	49.3%	

Table S1 ICP-OES results of MgAl-VOH, Mg-VOH, Al-VOH, and pure VOH.

Sample	Peak position (cm ⁻¹)	FWHM (cm ⁻¹)
MgAl-VOH	1008	41
Mg-VOH	1007	56
Al-VOH	1004	60
VOH	1002	72

Table S2 FTIR results of MgAl-VOH, Mg-VOH, Al-VOH, and pure VOH.

Sample	Shell	N^{a}	R(Å) ^b	$\sigma^2(\text{\AA}^2)^{ ext{c}}$	$\frac{\Delta E_0}{(\mathrm{eV})^\mathrm{d}}$	R factor
V foil	V-V	8*	2.61±0.01	0.0078±0.0065	3.9±0.8	0.007
, Ion	V-V	6*	3.00±0.01	0.0075±0.0011	0.00	01007
MσAl-	V=O	0.7 ± 0.5	1.59 ± 0.04			
VOH	V=O	3.0±0.9	1.90 ± 0.01	0.0071±0.0025	6.0±2.6	0.012
VOII	V-V	2.0±0.6	3.03±0.02			
VOH	V=O	0.8±0.3	1.65 ± 0.02			
	V=O	2.2±0.3	1.92 ± 0.01	0.003*	6.0±2.4	0.027
	V-V	1.3±0.2	3.03±0.02			

Table S3 EXAFS fitting parameters at V K-edge for various samples (S0 2=0.75).

^aN: coordination number; ^bR: bond length; ^c σ^2 : Debye-Waller factors; ^d ΔE_0 : inner potential correction; *R* factor: goodness of fit. *S*0 2 was set to be 0.75, according to the experimental EXAFS fit of V foil by fixing CN as the known crystallographic value.

	MgAl-VOH-1	MgAl-VOH	MgAl-VOH-2	MgAl-VOH-3	MgAl-VOH-4
Mg	0.6 wt%	1.0 wt%	1.7 wt%	2.3 wt%	2.4 wt%
Al	0.5 wt%	0.8 wt%	1.6 wt%	1.9 wt%	2.3 wt%

Table S4 ICP-OES results of MgAl-VOH with different Mg^{2+} and Al^{3+} ions concentrations.

Sample	Current density (A g ⁻¹)	Capacity (mAh g ⁻¹)	Cycling number	Reference		
PEO-LVO	0.1	438	3000	1		
MVOH	0.1	405	900	2		
HVO	0.1	323	1000	3		
NVO/PoPDA@GO	0.5	433	1000	4		
NVOH	0.05	366	1000	5		
MNVO	0.1	410	5000	6		
PEDOT-NVO	0.05	356	5000	7		
O _v -ZVO	0.1	402	2000	8		
O _d -VO	0.2	405	2000	9		
NaCaVO	0.1	347	2000	10		
AlVO-DMF	0.1	401	2000	11		
(1Zn, 1Ch)-VOH	0.5	424	2000	12		
CO ₂ -V ₆ O ₁₃	0.1	471	4000	13		
NiVO-BTA	0.2	464	1600	14		
MgAl-VOH	0.1	524	3000	This work		

Table S5 Capacity comparison of MgAl-VOH with the other vanadium oxides at different current densities.

- M. H. Wu, C. Shi, J. W. Yang, Y. Zong, Y. Chen, Z. G. Ren, Y. X. Zhao, Z. Li, W. Zhang, L. Y. Wang, X. L. Huang, W. Wen, X. L. Li, X. Ning, X. C. Ren and D. M. Zhu, *Adv. Mater.*, 2024, 36, 2310434.
- L. Yang, Y.-J. Zhu, F. L. Zeng, H.-P. Yu, L.-Y. Dong, J. C. Tao, G. He and H. Li, *Energy Storage Mater.*, 2024, 65, 103162.
- N. N. Liu, X. Wu, L. S. Fan, S. Gong, Z. K. Guo, A. S. Chen, C. Y. Zhao, Y. C. Mao, N. Q. Zhang and K. N. Sun, *Adv. Mater.*, 2020, **32**, 1908420.
- M. Li, M. Z. Liu, Y. Y. Lu, G. D. Zhang, Y. Zhang, Z. Y. Li, Q. J. Xu, H. M. Liu and Y. G. Wang, *Adv. Funct. Mater.*, 2024, **34**, 2312789.
- Y. Liu, C. J. Lu, Y. T. Yang, W. S. Chen, F. Ye, H. L. Dong, Y. P. Wu, R. Z. Ma and L. F. Hu, *Adv. Mater.*, 2024, 36, 2312982.
- X. R. Wang, Y. L. Wang, A. Naveed, G. T. Li, H. W. Zhang, Y. Zhou, A. C. Dou, M. R. Su, Y. J. Liu, R. Q. Guo and C. C. Li, *Adv. Funct. Mater.*, 2023, 33, 2306205.
- D. Bin, W. C. Huo, Y. B. Yuan, J. H. Huang, Y. Liu, Y. X. Zhang, F. Dong, Y. G. Wang and Y. Y. Xia, *Chem*, 2020, 6, 968–984.
- J.-J. Ye, P.-H. Li, H.-R. Zhang, Z.-Y. Song, T. J. Fan, W. Q. Zhang, J. Tian, T. Huang, Y. T. Qian, Z. G. Hou, N. Shpigel, L.-F. Chen and S. X. Dou, *Adv. Funct. Mater.*, 2023, 33, 2305659.
- M. Liao, J. W. Wang, L. Ye, H. Sun, Y. Z. Wen, C. Wang, X. M. Sun, B. J. Wang and H. S. Peng, *Angew. Chem. Int. Ed.*, 2020, 132, 2293–2298.
- 10. K. Y. Zhu, T. Wu and K. Huang, Adv. Energy Mater., 2019, 9, 1901968.
- F. Wan, Z. M. Hao, S. Wang, Y. X. Ni, J. C. Zhu, Z. W. Tie, S. S. Bi, Z. Q. Niu and J. Chen, *Adv. Mater.*, 2021, **33**, 2102701.
- Q. Zong, Y. L. Zhuang, C. F. Liu, Q. L. Kang, Y. Z. Wu, J. J. Zhang, J. Y. Wang, D. W. Tao, Q. L. Zhang and G. Z. Cao, *Adv. Energy Mater.*, 2023, 13, 2301480.
- W. Shi, B. S. Yin, Y. Yang, M. B. Sullivan, J. Wang, Y.-W. Zhang, Z. G. Yu, W. S. V. Lee and J. M. Xue, *ACS Nano*, 2021, 15, 1273–1281.
- J. D. Guo, J. X. Liu, W. B. Ma, Z. Y. Sang, L. C. Yin, X. Q. Zhang, H. Chen, J. Liang and D. A. Yang, *Adv. Funct. Mater.*, 2023, **33**, 2302659.