Supplementary material

Aqueous synthesis of lithium superionic-conducting complex hydride solid electrolytes

Hyerim Kim^a, Taehyun Kim^a, Seunghee Joo^a, Jeonghyun Kim^a, Jaehyun Noh^{a,b}, Jiyoung Ma^b Jung–Je Woo^b, Seungho Choi^c, Kyungsu Kim^c, Woosuk Cho^c, Kazuaki Kisu^d, Shin–ichi Orimo^{d,e}, and Sangryun Kim^{a,*}

^aGraduate School of Energy Convergence, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Gwangju 61005, Republic of Korea

^bGwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), 270–25 Samso–ro, Gwangju 61003, Republic of Korea

^cAdvanced Batteries Research Center, Korea Electronics Technology Institute, 25 Saenari–ro, Seongnam 13509, Republic of Korea

^dInstitute for Materials Research (IMR), Tohoku University, Katahira 2–1–1, Sendai 980–8577, Japan

^eWPI–Advanced Institute for Materials Research (WPI–AIMR), Tohoku University, Katahira 2–1–1, Sendai 980–8577, Japan

*Corresponding author

E-mail address: sangryun@gist.ac.kr

Fig. S1. FE–SEM images of Li(CB₉H₁₀)_{0.7}(CB₁₁H₁₂)_{0.3} prepared by the liquid–phase synthesis: (a) Scale bar, 100 μ m, (b) Scale bar, 20 μ m, and (c) Scale bar, 5 μ m.

Material	Synthetic method	Ionic conductivity (S cm ⁻¹)	Activation energy (kJ mol ⁻¹)	References
Li(CB ₉ H ₁₀) _{0.7} (CB ₁₁ H ₁₂) _{0.3}	Solid-phase	$6.7 \times 10^{-3} (25 \text{ °C})$	20 1	1
		8.5 × 10 ^{−2} (110 °C)	28.4	
	Liquid-phase	$6.6 \times 10^{-3} (25 \text{ °C})$	20.2	Present study
		9.5 × 10 ^{−2} (110 °C)	29.2	

Table S1. Ionic conductivities and activation energies of $Li(CB_9H_{10})_{0.7}(CB_{11}H_{12})_{0.3}$ prepared by solid-phase and liquid-phase synthesis.

Fig. S2. (a) XRD patterns of Li(CB₉H₁₀), Li(CB₁₁H₁₂), and Li(CB₉H₁₀)_{0.7}(CB₁₁H₁₂)_{0.3} before and after moisture exposure at a dew point of -50 °C for 12 h. (b) Change in the weight of the Li(CB₉H₁₀)_{0.7}(CB₁₁H₁₂)_{0.3} powder during moisture exposure at a dew point of -50 °C.

Fig. S3. Nyquist plots of $\text{Li}(\text{CB}_9\text{H}_{10})_{0.7}(\text{CB}_{11}\text{H}_{12})_{0.3}$ at 25 °C before and after moisture exposure at a dew point of -50 °C for 12 h.

Material	Solvent	Synthetic temperature ^{<i>a</i>} (°C)	Ionic conductivity ^b (S cm ⁻¹)	References
$Li(CB_9H_{10})_{0.7}(CB_{11}H_{12})_{0.3}$	DI water	200	6.6×10^{-3}	This work
Li ₇ P ₂ S ₈ I	ACN^{c}	200	6.3×10^{-4}	2
Li ₇ P ₂ S ₈ I	EP^{d}	170	$4.7 imes 10^{-4}$	3
Li ₇ P ₃ S ₁₁	ACN	180	1.0×10^{-3}	4
$Li_7P_3S_{11}$	THF ^e -ACN	250	$9.7 imes 10^{-4}$	5
$Li_7P_3S_{11}$	ACN	260	1.5×10^{-3}	6
$Li_7P_3S_{11}$	DME^{f}	250	$2.7 imes 10^{-4}$	7
Li ₆ PS ₅ Cl	Ethanol-THF	550	2.2×10^{-3}	8
Li ₆ PS ₅ Cl	ACN-PTH ^g	550	2.8×10^{-3}	9
Li ₆ PS ₅ Cl	EA^{h}	550	1.1×10^{-3}	10
Li ₆ PS ₅ Cl	Ethanol	80	1.4×10^{-5}	11
Li ₆ PS ₅ Cl	Ethanol-ACN	180	6×10^{-4}	12
Li ₆ PS ₅ Cl	THF-Ethanol	550	2.4×10^{-3}	13
Li ₆ PS ₅ Cl	THF	550	2.2×10^{-3}	14
Li ₆ PS ₅ Cl	Anisole–Ethanol	550	2.1×10^{-3}	15
$Li_{10}GeP_2S_{12}$	ACN-THF-Ethanol	550	1.6×10^{-3}	16
Li ₇ PS ₆	Ethanol	200	1.1×10^{-4}	17
Li ₆ PS ₅ Br	THF-Ethanol	550	1.4×10^{-3}	18
Li ₆ PS ₅ Br	EP-Ethanol	180	3.4×10^{-5}	19
Li ₆ PS ₅ Br	Ethanol	150	1.9×10^{-4}	20
β-Li ₃ PS ₄	THF	140	1.6×10^{-4}	21
β-Li ₃ PS ₄	EA	160	3.3×10^{-4}	22
β-Li ₃ PS ₄	ACN	200	1.2×10^{-4}	23
$\beta - Li_3 PS_4$	THF	140	1.3×10^{-4}	24
Li ₄ PS ₄ I	DME	200	$1.2 imes 10^{-4}$	25
Li ₃ PS ₄ -LiBH ₄	THF	160	6.0×10^{-3}	26
Li _{6.5} P _{0.5} GE _{0.5} S ₅ I	Ethanol	180	5.4×10^{-4}	27

Table S2. Used solvents, synthetic temperatures, and ionic conductivities of various solid electrolytes

 synthesized by the liquid–phase method.

Li ₂ S-P ₂ S ₅	Dibutyl ether	165	3.1×10^{-4}	28
Li ₃ InCl ₆	DI water ^{<i>i</i>}	200	2.0×10^{-3}	29
$Li_{3.2}P_{0.8}Sn_{0.2}S_4$	EDA ^{<i>j</i>} -EDT ^{<i>k</i>} -THF	260	$1.9 imes 10^{-4}$	30
Li ₄ SnS ₄	DI water	320	$1.4 imes 10^{-4}$	31
$0.6 \text{Li}_4 \text{SnS}_4 - 0.4 \text{LiI}$	Methanol	200	4.1×10^{-4}	32
Li _{6.28} Al _{0.24} La ₃ Zr ₂ O ₁₂	DI water	1200	5.1×10^{-4}	33
Li ₇ La ₃ Zr _{1.89} Al _{0.15} O ₁₂	Nitric acid	1150	$3.4 imes 10^{-4}$	34
Li _{1.4} Al _{0.4} Ge _{1.6} (PO ₄) ₃	Ethylene glycol	900	1.2×10^{-3}	35

^{*a*}The highest heat treatment temperature in the previous reports; ^{*b*}Room temperature (22–30 °C) conductivity of the cold–pressed samples; ^{*c*}ACN, acetonitrile; ^{*d*}EP, ethyl propionate; ^{*e*}THF, tetrahydrofuran; ^{*f*}DME, 1,2–dimethoxyethane; ^{*g*}PTH, 1–propanethiol; ^{*h*}EA, ethyl acetate; ^{*i*}DI water, deionized water; ^{*f*}EDA, 1,2–ethylenediamine; ^{*k*}EDT, 1,2–ethanedithiol.

Matarial	Ionic conductivity ^{a} (S cm ^{-1})		1-	References	
Materia	Solid–phase synthesis	Liquid–phase synthesis	Liquid–phase Solid– phase	Solid–phase synthesis ^b	Liquid–phase synthesis
$\text{Li}(\text{CB}_{9}\text{H}_{10})_{0.7}(\text{CB}_{11}\text{H}_{12})_{0.3}$	6.7×10^{-3}	6.6×10^{-3}	0.01	1	This work
Li ₇ P ₃ S ₁₁	3.2×10^{-3}	1.0×10^{-3}	0.69	36	4
Li ₇ P ₃ S ₁₁	1.7×10^{-2}	9.7×10^{-4}	0.94	37	5
Li ₇ P ₃ S ₁₁	2.9×10^{-3}	$2.7 imes 10^{-4}$	0.91	38	7
Li ₆ PS ₅ Cl	2.1×10^{-3}	2.2×10^{-3}	0.04	8	8
Li ₆ PS ₅ Cl	2.9×10^{-3}	2.8×10^{-3}	0.05	9	9
Li ₆ PS ₅ Cl	2.9×10^{-3}	1.1×10^{-4}	0.62	10	10
Li ₆ PS ₅ Cl	1.4×10^{-3}	1.4×10^{-5}	0.99	11	11
Li ₆ PS ₅ Cl	3.0×10^{-3}	2.4×10^{-3}	0.85	39	13
Li ₆ PS ₅ Cl	4×10^{-5}	6×10^{-4}	14	12	12
$Li_{10}GeP_2S_{12}$	1.2×10^{-2}	1.6×10^{-3}	0.87	40	16
Li ₆ PS ₅ Br	1.9×10^{-3}	1.4×10^{-3}	0.26	18	18
Li ₆ PS ₅ Br	1.0×10^{-4}	3.4×10^{-5}	0.66	19	19
Li ₆ PS ₅ Br	8.2×10^{-4}	$1.9 imes 10^{-4}$	0.77	20	20
Li ₂ S-P ₂ S ₅	6.7×10^{-4}	3.1×10^{-4}	0.54	28	28
Li ₃ InCl ₆	1.5×10^{-3}	2.0×10^{-3}	0.36	41	29
$Li_{3.2}P_{0.8}Sn_{0.2}S_4$	7.7×10^{-4}	$1.9 imes 10^{-4}$	0.75	30	30
β -Li ₃ PS ₄	8.9×10^{-7}	1.6×10^{-3}	1796.75	21	21
β -Li ₃ PS ₄	4×10^{-6}	3.4×10^{-4}	84	42	22
Li _{1.4} Al _{0.4} Ge _{1.6} (PO ₄) ₃	3.5×10^{-6}	1.2×10^{-3}	347.57	43	35

 Table S3. Ionic conductivities of various solid electrolytes synthesized by the solid-phase and liquid-phase methods.

^{*a*}Room temperature (22–30 °C) conductivity of the cold–pressed samples. ^{*b*}Conductivity compared in the literature on the liquid–phase synthesis.

Fig. S4. (a) Ionic conductivities of various solid electrolytes synthesized by the aqueous liquid–phase method. (b) Change rates of ionic conductivities of the aqueous liquid–phase and solid–phase samples.

Material	Solvent	Synthetic temperature ^{<i>a</i>} (°C)	Ionic conductivity ^b (S cm ⁻¹)	References
Li(CB ₉ H ₁₀) _{0.7} (CB ₁₁ H ₁₂) _{0.3}	DI water	200	6.6×10^{-3}	This work
Li ₃ InCl ₆	DI water	200	2.0×10^{-3}	29
Li ₄ SnS ₄	DI water	320	1.4×10^{-4}	31
$Na_{3.75}Sn_{0.75}Sb_{0.25}S_{4}$	DI water	450	$2.0 imes 10^{-4}$	44
$Na_{3.75}Sn_{0.75}Sb_{0.25}S_{4}$	DI water	550	$5.0 imes 10^{-4}$	44
Na ₃ SbS ₄	DI water	200	1.5×10^{-4}	45
$Li_{6.28}Al_{0.24}La_3Zr_2O_{12}$	DI water	1200	5.1×10^{-4}	33

 Table S4. Synthetic temperatures and ionic conductivities of various solid electrolytes synthesized by aqueous liquid–phase method.

^aThe highest heat treatment temperature in the previous reports; ^bRoom temperature (22-30 °C) conductivity of the cold-pressed samples.

Material	Ionic conductivity ^{<i>a</i>} (S cm ⁻¹)		$ 1 - \sigma / \sigma$	References	
	Solid–phase synthesis	Liquid–phase synthesis	Liquid–phase Solid–	Solid–phase synthesis ^b	Liquid–phase synthesis
Li(CB ₉ H ₁₀) _{0.7} (CB ₁₁ H ₁₂) _{0.3}	6.7×10^{-3}	6.6×10^{-3}	0.01	1	This work
Li ₃ InCl ₆	5.1×10^{-4}	2.0×10^{-3}	3	46	29
Li ₃ InCl ₆	1.5×10^{-3}	2.0×10^{-3}	0.36	41	29
Na ₃ SbS ₄	1.1×10^{-3}	1.5×10^{-4}	0.87	45	45
Li _{1.4} Al _{0.4} Ge _{1.6} (PO ₄) ₃	$3.5 imes 10^{-6}$	1.2×10^{-3}	347.57	43	35

Table S5. Ionic conductivities of various solid electrolytes synthesized by solid-phase and aqueous liquid-phase methods.

^{*a*}Room temperature (22–30 °C) conductivity of the cold–pressed samples. ^{*b*}Conductivity compared in the literature on the liquid–phase synthesis

Fig. S5. Optical images before and after the dissolution of the $Li(CB_9H_{10})$ powder in DI water.

Fig. S6. Optical images before and after the dissolution of the $Li(CB_{11}H_{12})$ powder in DI water.

Fig. S7. Optical images before and after the dissolution of the $Li(CB_9H_{110})$ and $Li(CB_{11}H_{12})$ powders in DI water.

Fig. S8. Charge–discharge profiles of the cell using Li_6PS_5Cl solid electrolyte at 0.05, 0.1, 0.2, 0.5, and 1C; at 0.1, 0.2, 0.5, and 1C, the charging rate is fixed as 0.1C. After the first cycle, as the C–rate increased by 2, 4, 10, and 20 times from 0.05C, the cell retained 89.9%, 85.6%, 70.5%, and 55.5% of the capacity (198.7 mAh g⁻¹) in the second cycle, respectively.

Fig. S9. Charge–discharge profiles of the cell using $Li(CB_9H_{10})_{0.7}(CB_{11}H_{12})_{0.3}$ solid electrolyte at 0.1 C and 40 °C.

REFERENCES

- S. Kim, H. Oguchi, N. Toyama, T. Sato, S. Takagi, T. Otomo, D. Arunkumar, N. Kuwata, J. Kawamura and S.-I. Orimo, *Nat. Commun.*, 2019, 10, 1081.
- E. Rangasamy, Z. Liu, M. Gobet, K. Pilar, G. Sahu, W. Zhou, H. Wu, S. Greenbaum and C. Liang, J. Am. Chem. Soc., 2015, 137, 1384–1387.
- N. H. H. Phuc, E. Hirahara, K. Morikawa, H. Muto and A. Matsuda, *J. Power Sources*, 2017, 365, 7–11.
- 4. M. Calpa, N. C. Rosero-Navarro, A. Miura and K. Tadanaga, *Inorg. Chem. Front.*, 2018, **5**, 501–508.
- R. C. Xu, X. H. Xia, Z. J. Yao, X. L. Wang, C. D. Gu and J. P. Tu, *Electrochim. Acta*, 2016, 219, 235–240.
- X. Yao, D. Liu, C. Wang, P. Long, G. Peng, Y.-S. Hu, H. Li, L. Chen and X. Xu, *Nano. Lett.*, 2016, 16, 7148–7154.
- 7. S. Ito, M. Nakakita, Y. Aihara, T. Uehara and N. Machida, J. Power Sources, 2014, 271, 342–345.
- A. Han, R. Tian, L. Fang, F. Wan, X. Hu, Z. Zhao, F. Tu, D. Song, X. Zhang and Y. Yang, ACS Appl. Mater. Interfaces, 2022, 14, 30824–30838.
- 9. R. F. Indrawan, H. Gamo, A. Nagai and A. Matsuda, Chem. Mater., 2023, 35, 2549–2558.
- 10. S. Choi, J. Ann, J. Do, S. Lim, C. Park and D. Shin, J. Electrochem. Soc., 2019, 166, A5193–A5200.
- S. Yubuchi, S. Teragawa, K. Aso, K. Tadanaga, A. Hayashi and M. Tatsumisago, *J. Power Sources*, 2015, **293**, 941–945.
- 12. N. C. Rosero-Navarro, A. Miura and K. Tadanaga, J. Power Sources, 2018, 396, 33–40.
- 13. L. Zhou, K.-H. Park, X. Sun, F. Lalère, T. Adermann, P. Hartmann and L. F. Nazar, ACS Energy

Lett., 2018, 4, 265–270.

- I.-H. Choi, E. Kim, Y.-S. Jo, J.-W. Hong, J. Sung, J. Seo, B. Kim, J.-h. Park, Y.-J. Lee, Y.-C. Ha,
 D. Kim, J. H. Lee and J.-W. Park, *J. Ind. Eng. Chem.*, 2023, **121**, 107–113.
- R. Maniwa, M. Calpa, N. C. Rosero-Navarro, A. Miura and K. Tadanaga, *J. Mater. Chem. A*, 2021, 9, 400–405.
- 16. K. Hikima, K. Ogawa, H. Gamo and A. Matsuda, Chem. Commun., 2023, 59, 6564–6567.
- D. A. Ziolkowska, W. Arnold, T. Druffel, M. Sunkara and H. Wang, ACS Appl. Mater. Interfaces, 2019, 11, 6015–6021.
- S. Yubuchi, M. Uematsu, C. Hotehama, A. Sakuda, A. Hayashi and M. Tatsumisago, *J. Mater. Chem. A*, 2019, 7, 558–566.
- S. Chida, A. Miura, N. C. Rosero-Navarro, M. Higuchi, N. H. H. Phuc, H. Muto, A. Matsuda and K. Tadanaga, *Ceram. Int.*, 2018, 44, 742–746.
- S. Yubuchi, M. Uematsu, M. Deguchi, A. Hayashi and M. Tatsumisago, ACS Appl. Energy Mater., 2018, 1, 3622–3629.
- Z. Liu, W. Fu, E. A. Payzant, X. Yu, Z. Wu, N. J. Dudney, J. Kiggans, K. Hong, A. J. Rondinone and C. Liang, J. Am. Chem. Soc., 2013, 135, 975–978.
- 22. N. H. H. Phuc, M. Totani, K. Morikawa, H. Muto and A. Matsuda, *Solid State Ion.*, 2016, **288**, 240–243.
- 23. H. Wang, Z. D. Hood, Y. Xia and C. Liang, J. Mater. Chem. A, 2016, 4, 8091–8096.
- 24. H.-D. Lim, X. Yue, X. Xing, V. Petrova, M. Gonzalez, H. Liu and P. Liu, *J. Mater. Chem. A*, 2018, 6, 7370–7374.
- S. J. Sedlmaier, S. Indris, C. Dietrich, M. Yavuz, C. Dräger, F. von Seggern, H. Sommer and J. r. Janek, *Chem. Mater.*, 2017, 29, 1830–1835.

- D. Wang, L.-J. Jhang, R. Kou, M. Liao, S. Zheng, H. Jiang, P. Shi, G.-X. Li, K. Meng and D. Wang, Nat. Commun., 2023, 14, 1895.
- Y. Song, D. Kim, H. Kwak, D. Han, S. Kang, J. Lee, S.-m. Bak, K. Nam, L. Hyun-wook and Y. Jung, *Nano. Lett.*, 2020, 20, 4337–4345.
- 28. S. Choi, S. Lee, J. Park, W. T. Nichols and D. Shin, Appl. Surf. Sci., 2018, 444, 10–14.
- X. Li, J. Liang, N. Chen, J. Luo, K. R. Adair, C. Wang, M. N. Banis, T. K. Sham, L. Zhang, S. Zhao,
 S. Lu, H. Huang, R. Li and X. Sun, *Angew. Chem., Int. Ed.*, 2019, 58, 16427–16432.
- J. Woo, Y. Song, H. Kwak, S. Jun, B. Jang, J. Park, K. Kim, C. Park, C. Lee, K.-. Park, Ho, H.-w. Lee and Y. S. Jung, *Adv. Energy Mater.*, 2023, 13, 2203292.
- Y. Choi, K. Park, D. Kim, D. Oh, H. Kwak, Y.-G. Lee and Y. Jung, *ChemSusChem.*, 2017, 10, 2605–2611.
- K. Park, D. Oh, Y. Choi, Y. Nam, L. Han, J.-y. Kim, H. Xin, F. Lin, S. Oh and Y. Jung, *Adv. Mater.*, 2016, 28, 1874–1883.
- 33. L. Dhivya, K. Karthik, S. Ramakumar and R. Murugan, *RSC Adv.*, 2015, 5, 96042–96051.
- 34. A. A. Raskovalov, E. A. Il'Ina and B. D. Antonov, J. Power Sources, 2013, 238, 48–52.
- 35. M. Zhang, K. Takahashi, N. Imanishi, Y. Takeda, O. Yamamoto, B. Chi, J. Pu and J. Li, J. *Electrochem. Soc.*, 2012, **159**, A1114.
- 36. F. Mizuno, A. Hayashi, K. Tadanaga and M. Tatsumisago, Solid State Ion., 2006, 177, 2721–2725.
- Y. Seino, T. Ota, K. Takada, A. Hayashi and M. Tatsumisago, *Energy Environ. Sci.*, 2014, 7, 627–631.
- 38. K. Minami, A. Hayashi and M. Tatsumisago, J. Ceram. Soc. Jpn., 2010, 118, 305–308.
- 39. S. Boulineau, M. Courty, J. M. Tarascon and V. Viallet, *Solid State Ion.*, 2012, 221, 1–5.
- 40. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y.

Kato, S. Hama, K. Kawamoto and A. Mitsui, Nat. Mater., 2011, 10, 682-686.

- 41. X. Li, J. Liang, J. Luo, M. N. Banis, C. Wang, W. Li, S. Deng, C. Yu, F. Zhao and Y. Hu, *Energy Environ. Sci.*, 2019, **12**, 2665–2671.
- 42. K. Homma, M. Yonemura, T. Kobayashi, M. Nagao, M. Hirayama and R. Kanno, *Solid State Ion.*, 2011, **182**, 53–58.
- 43. J. K. Feng, L. Lu and M. O. Lai, J. Alloys Compd., 2010, 501, 255–258.
- 44. J. W. Heo, A. Banerjee, K. Park, Y. Jung and S. Hong, *Adv. Energy Mater.*, 2018, **8**, 1702716.
- 45. T. Kim, K. Park, Y. Choi, J. Lee and Y. Jung, J. Mater. Chem. A, 2018, 6, 840–844.
- T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki and S. Hasegawa, *Adv. Mater.*, 2018, **30**, 1803075.