Supporting Information

Defective phase engineering of S-Scheme TiO₂-SnS/SnS₂ core-shell Photocatalytic nanofibers for elevated Visible light responsive H₂ generation and Nitrogen fixation

Kugalur Shanmugam Ranjith^a, Seyed Majid Ghoreishian^b, Ali Mohammadi^a, Ganji Seeta Rama Raju^a, Yun Suk Huh^{c,*}, Young-Kyu Han^{a,*}

^aDepartment of Energy and Material Engineering, Dongguk University-Seoul, Seoul 04620, South Korea

^bDepartment of Chemical Engineering, University of South Carolina, Columbia, SC, USA ^cDepartment of Biological Engineering, Inha University, Incheon 22212, South Korea

*Corresponding authors: yunsuk.huh@inha.ac.kr (Y. S. Huh), ykenergy@dongguk.edu (Y.-K. Han)

1. Experimental details

1.1. Characterization details

The electrospun nanostructures were analyzed for morphology and the elemental content using a field emission scanning electron microscope (FESEM, Hitachi S-4700), an energy dispersive Xray spectrometer (EDX)-equipped with high-resolution transmission electron microscopy (HRTEM, JEOL JEM-2100) at an accelerating voltage of 200 kV. Energy-dispersive X-ray spectroscopy (EDX) was utilized to confirm the composition and elemental mapping. The tructural features of the TiO₂-SnS heterostructures were measured by a PANalytical X'Pert multipurpose X-ray diffractometer with Cu Ka radiation. Using a JASCO V-770 UV-vis spectrophotometer and a FEX, NOST, Republic of Korea PL spectrophotometer, the UV-vis diffuse reflectance spectra (DRS) and photoluminescence (PL) measurements were obtained. The surface chemical composition was examined using Thermo K-alpha-monochromated X-ray photoelectron spectroscopy (XPS) with an Al K (1486.6 eV) source. After the samples were degassed for three hours at 200 °C, the Brunauer-Emmet-Teller (BET) analysis was used to determine the samples' specific surface area utilizing ASAP ZOZO (Micromeritics Co. USA). Using a UV-vis spectrophotometer (JASCO V-770), the UV-vis absorbance spectra of the pollutants were used to examine the dye degradation. A Bruker model A300 spectrometer (microwave frequency of 9.86 GHz, modulation amplitude of 3 G, modulation frequency of 100 kHz, microwave power of 6.37 mW, temperature of 298 K) was used to conduct electron paramagnetic resonance (EPR). Using HORIBA Delta Pro, time-resolved PL (TRPL) spectra were obtained at an excitation wavelength of 350 nm.

1.2. Photocatalytic experiments for H₂ evolution

The heterostructure catalyst (100 mg) with the TEOA aqueous solution (10%, 100 mL) serving as a trapping agent was sonicated for 10 min, and the mixture was introduced into a sealed glass reactor to investigate the photocatalytic hydrogen production from water splitting. The reactor was completely degassed to remove the air and stirred for 30 min in N₂ bubbling to maintain the atmosphere inert. A 300 W Xe lamp (PhotoFluorII) equipped with a UV-cut-off filter ($\lambda \ge 420$ nm) was used as the light source. The photo reactor had a quartz window with a top irradiation area of about 28.26 cm². During the reaction, the temperature was kept at 15 °C using cooling water circulation. The evolved H₂ was quantified by gas chromatography (GC) with a thermal conductive detector (TCD, connected to a TDX-01 molecular sieve column). Besides, N₂ was used as carrier gas. The apparent quantum yield (AQY) was calculated for different incident monochromatic wavelengths (365, 420, 450, 520, and 650 nm) according to the following equation:

1.3. Photocatalytic experiments for N₂ fixation

The photocatalytic N_2 fixation reaction was performed under a 300 W Xe lamp (PhotoFluorII) equipped with a top-irradiated quartz reactor. Typically, 10 mg of photocatalyst was dispersed in 50 mL of distilled H₂O without any sacrificial agents and ultrasonicated for 10 min. The mixture was transferred into the reactor and vacuum-degassed for 30 min. Afterward, high-purity N₂ (>99.999%) bubbled into the system. The degassing and bubbling processes were repeated five times. Finally, the N₂ was bubbled for another 30 min before the light was turned on, and it continued to bubble throughout the reaction process at a flow rate of 100 mL/min. The reactor was built with a water-circulating system to keep the temperature of the reaction environment constant at 2 °C. Under photoirradiation, every 30 min, 1 mL of liquid was collected and filtered with a 0.22 μ m filter, and ammonia concentration was detected by Nessler's reagent method using UV spectrophotometry. Ar gas was purged at the same rate in the evacuated reaction vessel instead of N₂ for the control experimental condition. **Fig. S5** shows the calibration curve of Nessler's reagent method, with an R₂ value greater than 0.997.

1.4. Photoelectrochemical measurements

The measurement for the photocurrent, Mott-Schottky (M-S), linear sweep voltammetry, and electrochemical impedance (EIS) characterization were analyzed using Metrohm Autolab (PGSTAT302N) electrochemical workstation in a standard three-electrode system with Pt wire as counter electrode and Ag/AgCl (sat. KCl) as reference electrode. The catalytic slurry was loaded on a FTO substrate and used as a working electrode. The catalytic slurry was prepared by mixing catalyst (10 mg) and Nafion solution (5 wt%, 20 μ L) in EtOH (0.5 mL). A 300 W Xe lamp (PhotoFluorII) equipped with a UV-cut-off filter ($\lambda \ge 420$ nm) was used as the light source. In this experiment, 0.5 M Na₂SO₄ aqueous solution was used as the electrolyte for the photo-responsive measurements.

1.5. Computational Methodology

After drawing the structures based on the XRD spectrum, the composite structure was optimized for declination the residual forces on the atoms to less than 0.03 eV·Å⁻¹. Basic calculations with QuantumATK software. For bulk calculations, we employed the linear combination of atomic orbitals (LCAO) approach within the generalized gradient approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE) functional. The basis set used was double zeta polarization (DZP) to ensure an accurate description of the electronic states. A density mesh cutoff of 80 Hartree was applied to improve the resolution of the charge density, and a grid spacing of 4.0 Å was used. Nonequilibrium Green's function (NEGF) Device Calculations: For the device simulations, we employed the NEGF formalism using the same LCAO-GGA method with the DZP basis set to describe the electronic structure. A Monkhorst-Pack k-point grid of $7\times3\times9$ was chosen for accurate sampling along the device and transport directions. The density mesh cutoff was set to 80 Hartree to ensure convergence in charge and potential.

Fig. S1. FESEM images of The Ti-PVP and Ti/Sn-PVP based as prepared nanofibers. (a) Ti-PVP NFs, (b) Ti/Sn (0.4/0.2 mL h⁻¹)-PVP core-shell NFs.

Fig. S2. SEM and TEM images of the TiO_2 nanofibers prepared through the electrospinning process.

Fig. S3. EDAX spectra of the TiO_2 -SnS/SnS₂ (2:2) NFs.

Fig. S4. Average rate of Photocatalytic H₂ evolution over TiO₂-based heterostructure NFs under visible irradiation.

Fig. S5. The Standard curve of ammonia solution with different concentrations calculated from UV-Vis absorption spectra at λ =420 nm was measured using the Nessler reagent chromogenic method.

Fig. S6. NH₃ production rate over TiO₂-SnS/SnS₂ (2:2) NFs under visible irradiation (>420 nm) with adding different volume content of methanol.

Fig. S7. (a, b) FE-SEM and TEM of the reused catalyst; (c) XRD of TiO_2 -SnS/SnS₂ (2:2) NFs before and after the cyclic test.

Fig. S8. (a) K-M plot for the TiO₂, SnS₂, SnS/SnS₂, and TiO₂ based heterostructure NFs.

Fig. S9. (a) UV-Vis DRS, (b) K-M plot of TiO_2 -SnS_x NFs.

Fig. S10. Mott-Schottky plot of SnS/SnS_2 NFs.

Fig. S11. XPS valence band spectra of SnS_2 and SnS/SnS_2 NFs.

Fig. S12. Energy band structure TiO₂, SnS₂, SnS/SnS₂ before getting the heterostructure interface.

Fig. S13. (a) Fluorescence profile of terephthalic acid, and (b) NBT abs decrease rate in presence of TiO_2 -SnS_x NFs under photo irradiation.

Fig. S14. The primary crystal structure of 3 main layers in the O_v -TiO₂-SnS/SnS₂ layers.

Fig. S15. Electron transmission spectrum through the O_v -Ti O_2 -SnS/SnS₂ system in respect of applied potential (light radiation).

Fig. S16 (a) Transmission intensity of electrons passage, (b) Density of electrons passage through the photocatalyst layers of TiO_2 -SnS/SnS₂.

Fig. S17 (a) Potential vs. direction in TiO_2 -SnS/SnS₂ (1 bohr = 0.52918 angstroms). (b) Fat band diagram of different atomic orbitals on the electronic properties around the Fermi level of TiO_2 -SnS/SnS₂ (dominate role of P-orbitals of sulfur (orange curve) and d-orbitals of titanium (red curve).

Samples	O 1s (at%)			S 1s (at%)	
	O _L (%)	O _V (%)	O _C (%)	Sn-S (%)	S ² (%)
TiO ₂ NFs	80.45	4.39	15.17		
TiO ₂ -SnO NFs	79.26	15.54	5.20		
TiO ₂ -SnS (0.5:2) NFs	78.87	19.23	1.80	67.30	27.30
TiO ₂ -SnS/SnS ₂ (2:2) NFs	28.65	60.63	10.72	84.36	13.61
TiO ₂ -SnS ₂ (2:0.5) NFs	67.85	27.67	4.47	78.56	20.62

Table S1. The presence of O and S-related energy states on fabricated Ti-based heterostructures

 estimated from the XPS analysis

Catalurt	Saarran gan	I icht sonnoo	Ammonia yield	vield	
Catalyst	Scavenger	Light source	(µmol. g ⁻¹ . h ⁻¹)	Kei	
TiO ₂ -SnS/SnS ₂	None	> 420 nm	517	This work	
		Full spectrum	1179	This work	
Au/TiO ₂	20vol% Ethanol	300 W Xe-lamp	56.3	[1]	
$V_{Zn}/Zn_3In_2S_6$	Methanol	$\lambda \ge 420 \text{ nm}$	164.4	[2]	
MoS ₂ /CdS	Methanol	300 W Xe-lamp	173.3	[3]	
		$\lambda \ge 420 \text{ nm}$			
$Mn_{0.5}Cd_{0.5}S$	Methanol	$\lambda \ge 420 \text{ nm}$	121.9	[4]	
/CoTiO ₃	(10 vol%)				
Ru-TiO ₂	None	Full spectrum	315	[5]	
$TiO_2/g-C_3N_4$	None	$\lambda \ge 420 \text{ nm}$	485	[6]	
TiO ₂ -Au-BiOI	None	Full spectrum	543.5	[7]	
BiOBr/TiO ₂	None	Full spectrum	950	[8]	
TiO ₂ /MIL-	20 vol% methanol	simulated sunlight	1084.31	[9]	
88A(Fe)/g-C ₃ N ₄					
TiO ₂ -Au-BiOI	None	UV-vis	534.5	[10]	
AgCl/d-Bi ₂ O ₃	None	Vis (400W Xe)	606	[11]	
TiO ₂ (OVs)	10 vol% methanol	Simulated sunlight	324.86	[12]	
CaTiO ₃ (OVs)	1 vol% methanol	Natural sunlight	236.12	[13]	

Table S2. Comparison of activity with reported photocatalytic nitrogen fixation.

Reference

- [1] S. Liu, Y. Wang, S. Wang, M. You, S. Hong, T.-S. Wu, Y.-L. Soo, Z. Zhao, G. Jiang, Q. Jieshan, B. Wang, Z. Sun, Photocatalytic fixation of nitrogen to ammonia by single Ru atom decorated TiO₂ nanosheets, *ACS Sustainable Chemistry & Engineering*, 7 (2019) 6813-6820.
- [2] H. Han, Y. Yang, J. Liu, X. Zheng, X. Wang, S. Meng, S. Zhang, X. Fu, S. Chen, Effect of Zn vacancies in Zn₃In₂S₆ nanosheets on boosting photocatalytic N₂ fixation, ACS Applied Energy Materials, 3 (2020) 11275-11284.
- [3] X. Zheng, H. Han, J. Liu, Y. Yang, L. Pan, S. Zhang, S. Meng, S. Chen, Sulfur vacancymediated electron-hole separation at MoS₂/CdS heterojunctions for boosting photocatalytic N₂ reduction, *ACS Applied Energy Materials*, 5 (2022) 4475-4485.
- [4] H. Lv, M. Zhan, G. Li, F. Zhang, Z. Suo, C. Zhou, B. Wan, G. Wang, Y. Liu, Construction of a direct Z-scheme Mn_{0.5}Cd_{0.5}S/CoTiO₃ heterojunction with enhanced photocatalytic nitrogen fixation performance, *Applied Surface Science*, 655 (2024), 159572.
- [5] G. Ren, M. Shi, S. Liu, Z. Li, Z. Zhang, X. Meng, Molecular-level insight into photocatalytic reduction of N₂ over by electronic Metal-support interaction, *Chem. Eng. J.* 454 (2023) 140158.
- [6] S. Wu, C. He, L. Wang, J. Zhang, High-efficiency electron tandem flow mode on carbon nitride/titanium dioxide heterojunction for visible light nitrogen photo fixation, *Chem. Eng.* J. 443 (2022) 136425.
- [7] X. Yu, H. Qiu, Z. Wang, B. Wang, Q. Meng, S. Sun, Y. Tang, K. Zhao, Constructing the Z-scheme TiO₂/Au/BiOI nanocomposite for enhanced photocatalytic nitrogen fixation, *Appl. Surf. Sci.* 556 (2021) 149785.
- [8] X. Su, X. Zhang, M. Gao, X. Li, J. Chang, L. Hu, D. Geng, Y. Ren, T. Wei, J. Feng, Electron deficient Bi^{3+δ} serves as N₂ absorption sites and inhibits carriers recombination to enhance N₂ photo-fixation in BiOBr/TiO₂ S-scheme heterojunction, *Journal of Colloid and Interface Science*, 663 (2024), 61-72.
- [9] Q. Ding, X. Zou, J. Ke, Y. Dong, Y. Cui, H. Ma, Enhanced artificial nitrogen fixation efficiency induced by construction of ternary TiO₂/MIL-88A(Fe)/g-C₃N₄ Z-scheme heterojunction, *Journal of Colloid and Interface Science*, 649 (2023), 148-158.

- [10] X. Yu, H. Qiu, Z. Wang, B. Wang, Q. Meng, S. Sun, Y. Tang, K. Zhao, Constructing the Z-scheme TiO₂/Au/BiOI nanocomposite for enhanced photocatalytic nitrogen fixation, *Applied Surface Science*, 556 (2021), 149785.
- [11] X. Gao, Y. Shang, L. Liu, F. Fu, Chemisorption-enhanced Photocatalytic Nitrogen Fixation via 2D Ultrathin P-N Heterojunction AgCl/δ-Bi₂O₃ Nanosheets. *Journal of Catalysis*, 37 (2019), 71-80.
- [12] G. Zhang, X. Yang, C. He, P. Zhang, H. Mi, Constructing a tunable defect structure in TiO₂ for photocatalytic nitrogen fixation, *J. Mater. Chem. A*, 8 (2020), 334- 341.
- [13] A. Kumar, M. Kumar, V. N. Rao, M. V. Shankar, S. Bhattacharya, V. Krishnan, Unraveling the structural and morphological stability of oxygen vacancy engineered leaf-templated CaTiO₃ towards photocatalytic H₂ evolution and N₂ fixation reactions, *J. Mater. Chem. A*, 9 (2021), 17006-17018.