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Experimental Section 
 
Materials 

FeCl3.6H2O, N2H4.H2O, and KOH were purchased from Central Drug House (CDH), India. 

Fe(acac)3 was purchased from Sigma-Aldrich. The sulfur powder was purchased from 

Fisher Scientific. Selenium powder 100 mesh (99.5%) was purchased from Sigma Aldrich. 

ZnCl2 (98.0%) was purchased from TCI Chemicals. All the chemicals purchased were 

directly used without any further purification. The nickel foam was purchased from RVL 

Scientific, India, and used after washings as explained below. The Glassy Carbon 

electrode and Hg/HgO as used as working and reference electrodes respectively, was 

supplied by CHI, India. Nafion 117 containing solution was purchased from Sigma 

Aldrich.   

Preparation of materials 

Synthesis of Fe3Se4. Fe3Se4 was synthesized by a pre-reported method with slight 

modifications. In a three-neck round bottom flask (250 mL) fixed with a condenser, 35 

mL of oleylamine was taken. Then, the set-up was held at 393 K for 1 h to remove 

dissolved impurities under the Ar atmosphere. The Fe(acaac)3 (0.53 g) and Se powder 

(0.158 g) precursors were added at 393 K under stirring conditions and then the 

temperature was raised to 473 K for another 1 h. After holding the temperature at 473 

K, the temperature was again raised to 573 K for another 1 h. Finally, the reaction 

temperature was dropped to room temperature and the reaction was quenched with 2-

propanol (25 mL). The Fe3Se4 particles were then collected by washing three times with 

a mixture of hexane and 2-propanol (2:3) at 5000 RPM. The final powder sample was 

collected by drying at 60 oC for 2 h.  

Synthesis of Fe3S4. Fe3S4 used herein was prepared by a pre-reported method without 

any modifications.1  

 

Synthesis of Fe3O4. Fe3O4 used herein was prepared by a pre-reported method without 

any modifications.1  

 

Synthesis of ZnSe.  Anhydrous ZnCl2 (0.19 g) was dissolved in 30 mL ethylene glycol in a 

100 mL beaker under constant stirring. After the complete dissolution of ZnCl2 in 

ethylene glycol, 5 mL of freshly prepared 1 M NaOH solution was added to the Zn(II) 

solution, and white colored solution was obtained. Then, to the white solution, 0.2 g of 

Se powder was added and kept under stirring for another 10 min. The as-obtained 

solution was transferred to a 50 mL Teflon-lined stainless steel autoclave and kept at 

180 oC for 12 h. Finally, the reaction temperature was brought to room temeprature and 

washed 3 times with miliQ water and 2 times with ethanol to purify the material. The 

as-synthesized ZnSe powder was finally collected after drying at 60 oC for 2 h.    
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Material Characterization 

Powder X-ray diffraction (PXRD).  The phase purity and crystallinity of the synthesized 

material and the material after electrocatalysis were verified through powder X-ray 

diffraction using a BRUKER D8 Advance instrument fitted with a Cu-Kα1 source (λ = 

1.5406 Å). The post-electrolysis powder sample was isolated from the electrode surface 

through sonication and was then studied using powder X-ray diffraction. 

Field emission scanning electron microscopy (FESEM). FESEM images of the synthesized 

materials and the materials deposited on nickel foam electrodes were captured using 

the TESCAN instrument (model Magna). The as-synthesized powder sample, was directly 

placed on a carbon tape for observation under the electron beam. Additionally, the 

electrodes after electrocatalysis were examined to assess the uniform deposition of the 

powder catalyst onto the nickel foam and to analyze their elemental composition. The 

TESCAN instrument was also used for STEM elemental mapping with an acceleration 

voltage of 30 kV. The sample for STEM was prepared on carbon coated TEM grid similar 

to that of TEM sample preparation.  

Transmission electron microscopy (TEM). TEM images of each sample were captured 

using a FEI Tecnai G2 20 S-TWIN transmission electron microscope (FEI Company, 

Eindhoven, Netherlands), featuring a LaB6 electron source operating at an acceleration 

voltage of 200 kV. Carbon-coated 300 mesh grids from Ted Pella, USA, were used for the 

TEM study. For the post-catalytic TEM analysis, samples were extracted directly from 

the post-catalytic electrode surface under continuous sonication and subsequently 

transferred onto copper grids for further examination.  

X-ray photoelectron spectroscopy (XPS). The surface composition of both the as-

prepared material and the material after electrocatalysis, along with subsequent 

elemental analysis, was directly analyzed through XPS. The measurements were carried 

out using the AXIS Supra instrument manufactured by Kratos Analytical Ltd., equipped 

with Al Kα radiation as the X-ray source with hν = 1486.6 eV. Throughout the 

measurement process, the operational voltage and current were maintained at a 

constant level of 15 kV and 15 mA, respectively. The core-level XPS plot was 

deconvoluted using OriginLab 2020b software. The individual peak was fitted with 

PsdVoigt1 function using the multiple peak fit option.  

Brunauer–Emmett–Teller (BET) Analysis. The nitrogen adsorption-desorption and pore 

size distribution measurements were performed using the NOVA-2000e instrument, 

acquired from Quantachrome Instruments operated by the constant volume gas 

adsorption method. The nitrogen adsorption-desorption analysis was conducted at a 

constant temperature of 77 K. Before analysis, the sample was pre-treated by a gas-

degassing method to cancel out any interference from adsorbed water or any other 

gases.    

Contact angle measurement. The contact angle measurements were performed using 

the KRUSS Drop Shape Analyser DSA100M system equipped with automatic syringes for 
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customized liquid applications. For each contact angle measurement, water is used 

using the automatic syringe mode. All the results were analyzed using proprietary 

software provided with the system. The surface wettability test was performed on the 

thin pellets prepared with the powder samples.    

Raman spectroscopy. Raman measurements were conducted either directly on the 

powder samples, ex situ or under quasi-in-situ conditions directly on the electrode 

surface. A Raman microscope manufactured by HORIBA Scientific was utilized, featuring 

532 nm and 785 nm lasers. The objective of the optical microscope was consistently set 

at 10x for each experiment, and all spectra were calibrated using standard crystalline Si 

spectra.  

Analyses of crystallographic parameters and assignment of valence State. 

Experimentally obtained powder X-ray diffraction patterns of Fe3X4 (X=Se, S, O) samples 

were correlated to the standard ICDD data. The crystallographic information files (CIFs) 

were obtained from the open-access databases2-4 and were analyzed by the VESTA 

software. In a unit cell, the tetrahedral (Td) and octahedral (Oh) iron site locations and 

bond parameters were analyzed using VESTA software.4-11 According to the literature 

reports and bond parameters the tetrahedral or octahedral sites were assigned to the 

FeIII and FeII centres.2-4  

Preparation of working electrode. The nickel foam was cleaned initially with 1 M HCl, 

followed by sonicating it for 15 minutes in Milli-Q water and acetone, respectively. The 

working electrode was prepared by drop-casting the catalyst on the cleaned surface of 

nickel foam (NF). To make the catalyst ink, a mixture of 25 mg of the material, 800 μL of 

isopropyl alcohol, and 200 μL of Nafion 117 solution was sonicated for approximately 30 

minutes. Subsequently, different amounts of catalyst ink were drop-casted on the 1 x 1 

cm² geometric surface area of the nickel foam surface which was air-dried overnight. 

The mass loading of the catalyst was determined from the difference in weight of the 

blank nickel foam and sample loaded nickel foam. For the glassy carbon (GC) electrode, 

the sample was drop-casted similarly and the catalyst loading was calculated based on 

the volume of catalyst ink drop-cast on the electrode surface. 

Electrochemical study. The electrochemical study was carried out in a three-electrode 

setup using 1 M KOH as an electrolyte, Hg/HgO (1 M NaOH) as a reference electrode 

(RE), graphite rod as a counter electrode (CE), and catalyst-loaded GC/NF as the working 

electrode (WE). All the electrochemical studies were carried out using Gamry 1010E-

29165 potentiostat, commanded through the Gamry Framework software package. 

The cyclic voltammetry (CV) and linear sweep voltammetry (LSV) data were 

recorded between a fixed potential region as mentioned in the main text or respective 

figure captions. Polarization curves of LSV studies were plotted after 85% iR-correction, 

done by post-run iR-correction module provided with the Gamry Framework software 

package. The solution resistance (Rs) required for iR-correction was also directly 

obtained from the equivalent circuit fitting of the electrochemical impedance 
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spectroscopy (EIS). All the potentials reported for LSV and CV are calibrated to the 

reversible hydrogen electrode (RHE) scale in 1 M KOH (pH = 13.65) using the following 

equation: 

 

E(RHE) = E(Hg/HgO) + 0.098 V + (0.059 x pH) V                         ……Eqn. S1 

η (Overpotential, OER) = E (RHE) – 1.23 V                                  ……Eqn. S2        

In situ Raman Study. In situ Raman studies were conducted using a customized Raman 

cell designed to accommodate a three-electrode system within a single chamber, 

allowing direct exposure of the working electrode to the Raman laser. After configuring 

the reference and counter electrodes alongside the working electrode, the cell setup 

was connected to a potentiostat. The electrolyte chamber was filled with 10 mL of 1 M 

KOH solution and topped with an open lid featuring a window for the laser beam. To 

prevent any potential contact with the electrolyte, the optical microscope's objective 

was set to 10X magnification. For the in situ measurements, a 785 nm laser was used. 

Under varying timeframes at a fixed potential of 1.47 V vs RHE, the working electrode 

was analyzed through Raman spectroscopy, with a 15-second acquisition time for each 

spectrum. The laser intensity was limited to 10% to avoid spectral saturation, employing 

a 1200T grating with a slit width of 100 and a hole width of 300. All spectra were 

collected using LabSpec 6 software and presented without baseline correction. Prior to 

each experimental run, the Raman spectrometer was calibrated against a single 

crystalline silicon wafer to ensure accuracy. 

Tafel analysis. The Tafel slope measurements from the as-obtained linear sweep 

voltammetric curves were further plotted as the overpotential (η) in the y-axis vs. 

logarithm of the modulus of current density (log j) in the x-axis and thus the ca. slope is 

found to be equivalent of Tafel slope. Further, the Tafel slope was calculated according 

to the Tafel equation,  

η = blog j + a                                                                                     ……Eqn. S3 

where η is the overpotential (V), j is the current density (mA cm-2), and b is the Tafel 

slope (mV dec-1).  

Determination of double-layer capacitance (Cdl) and electrochemical surface area 

(ECSA). Double layer capacitance (Cdl) was measured by recording CV cycles of the 

different electrodes in the non-faradaic region varying scan rate from 10 mV s-1 to 200 

mV s-1. The potential range for every experiment was fixed between -0.15 and -0.05 V 

vs Hg/HgO and the Cdl of each sample was calculated from the linear fit of the difference 

between the anodic and cathodic current at a fixed potential of 0.85 V vs RHE. Now, 

from the Cdl value, the ECSA was calculated using the equation ECSA = Cdl/Cs, where, Cs 

is defined as the specific capacitance of the material per unit area and the specific 

capacitance (Cs) value of 1.7 mF cm-2 was considered for ECSA calculation.4  
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Electrochemical impedance spectroscopy (EIS). Electrochemical impedance 

spectroscopy was conducted with a fixed bias potential of 0.570 V vs. Hg/HgO across 

various samples deposited on the NF, generating Nyquist plots. The EIS data were 

obtained through a comprehensive amplitude scan of a sinusoidal wave within a fixed 

frequency range from 100 kHz to 1 mHz. Subsequently, all Nyquist plots were fitted 

using an equivalent R-C circuit model. The charge-transfer resistance (Rct) was 

determined from the semicircle diameter observed in the Nyquist plots. 

Analysis of the gas evolved during electrolysis. After a chronoamperometric (CA) study 

at a constant potential, about 1 mL of the headspace gas from the gas-tight cell (total 

headspace: 18 mL) was directly injected into the Agilent 8860 GC system equipped with 

TCD detectors with Argon carrier gas. The carrier gas flow rate was kept at 5 mL min-1 

and the oven temperature was kept isothermal at 40 oC. To quantify the evolved gas, 

the calibration curve for the hydrogen was made using standard hydrogen gas 

purchased from Sigma Gases, India. The calibration curve was made by injecting 

different volumes of standard gases and by plotting the concentration vs peak area 

obtained from the GC chromatograms. The data analysis was carried out completely on 

the OpenLab EZChrom software provided by Agilent Technologies. From the calibration 

curve, a linear equation was obtained to quantify the amount of H2 in μmol gas present 

in 1 mL injected gas (from the overhead space of the cathodic chamber) from the peak 

area in the GC chromatogram.  

Faradaic Efficiency (FE) calculation for hydrogen evolution reaction (HER). The Faradaic 

efficiency of the evolved H2 was calculated from the amount of total charge (C) passed 

through the solution over some time of 2 h. The faradaic efficiency for H2 (FEH2) was 

calculated using the following equation. 

FE (%) = [n (moles of H2 formed) x (ne-) x (F) / (Q)] x 100 

where F is Faraday’s constant (96,500 C mol-1), n is the moles of H2 determined from the 

GC, ne- is the number of electrons i.e., 2 for HER, and Q is the total charge passed 

through the reaction solution during the CA at 2.5 V (cell potential). 
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Figure S1. Raman spectra of the pristine Fe3Se4 powder sample.   

 

 
Figure S2. FESEM images of the pristine Fe3Se4 powder sample acquired at different 

magnifications.   
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Figure S3. EDX spectrum of the pristine Fe3Se4 powder sample. 

 

 

Figure S4. Elemental mapping of the pristine Fe3Se4 powder sample with uniform 

distribution of Fe and Se. 

 



 
 

S10 
 

 

Figure S5. TEM images of the pristine Fe3Se4 powder sample acquired at different 

magnifications.   
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Figure S6. SAED pattern of the pristine Fe3Se4 powder sample (scale bar: 5 1/nm). 

 

 

Figure S7. Time-dependent surface wettability test on the pristine Fe3Se4 sample.   
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Figure S8. Time-dependent surface wettability test on the pristine Fe3S4 sample.   

 

 

 

Figure S9. Time-dependent surface wettability test on the pristine Fe3O4 sample.   

 

 

Figure S10. (a) N2 adsorption-desorption isotherm recorded at 77 K and (b) pore-size 

distribution of powder Fe3Se4 sample.  
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Figure S11. (a) N2 adsorption-desorption isotherm recorded at 77 K and (b) pore-size 

distribution of powder Fe3S4 sample.  

 

Figure S12. (a) N2 adsorption-desorption isotherm recorded at 77 K and (b) pore-size 

distribution of powder Fe3O4 sample.  
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Figure S13. XPS survey scan of the as-synthesised powder Fe3Se4 sample.  

 

Figure S14. High-resolution Fe 2p XPS spectra of the pristine Fe3S4 powder sample.   
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Figure S15. Core-level S 2p XPS spectra of the pristine Fe3S4 powder sample.   

 

Figure S16. Core-level Fe 2p XPS spectra of the pristine Fe3O4 powder sample.   
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Figure S17. PXRD pattern of the as-synthesised ZnSe powder sample.  

 

Figure S18. CV cycles recorded with the Fe3Se4/NF electrode within potential range -0.2 

to 1.1 V vs RHE at a scan rate of 5 mV s-1. 
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Figure S19. Raman spectra of the Fe3O4/NF electrode before (black) and after (red) 10 

CV cycles at scan rate 5 mV s-1. 

 

 

Figure S20. CV cycles performed in 1 M KOH at 1 mV s-1 for the pristine Fe3Se4 powder 

sample drop casted on NF.  
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Figure S21. FESEM images collected on the Fe3Se4/NF electrode surface after 12 h CA 

study at 1.47 V vs RHE. 
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Figure S22. EDX spectrum obtained from the Fe3Se4/NF electrode surface after 12 h CA 

study at 1.47 V vs RHE. 

 

Table S1. The ICP-MS study report of the post-CA electrolyte.  
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Figure S23. Post-CA PXRD pattern identify the presence of both α-FeO(OH) and t-Se.  

Bottom: bar plot for standard t-Se reported in ICDD card 01-0848.   
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Figure S24. Post-CA elemental mapping in STEM mode identifying uniform distribution 

of Fe and O, with discrete presence of S.   
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Figure S25. The post-CA Raman spectra recorded from the isolated powder sample from 

the glassy carbon (GC) electrode after 12 h chronoamperometry at 1.5 V vs RHE.   
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Figure S26. Chronoamperometric study of the ZnSe/NF electrode for (a) 4 h and (b) 8 h 

at 1.52 V vs RHE and (c) Raman spectra directly observed on the electrode surface after 

4 h and 8 h CA. 
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Figure S27. (a) Raman spectra and (b) PXRD data recorded at different time interval at 

an applied potential of 1.47 vs RHE. (c) Magnified version of the panel b (PXRD).   

 

 

 

Figure S28. Core-level Fe 2p XP spectrum obtained from the Fe3Se4/NF electrode surface 

after 12 h CA study at 1.47 V vs RHE. 
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Figure S29. Core-level Se 3d XP spectrum obtained from the Fe3Se4/NF electrode surface 

after 12 h CA study at 1.47 V vs RHE. 

 

 

Figure S30. Core-level O 1s XP spectrum obtained from the Fe3Se4/NF electrode surface 

after 12 h CA study at 1.47 V vs RHE. 
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Table S2. OER activity of α-FeO(OH)/t-Se and some reported Fe-based electrocatalysts . 

aNickel Foam, bcarbon fibre paper, cglassy carbon electrode, diron foam, enickel foil, fcarbon 

paper, ggold electrode, hgold foam 

 

Catalysts Substrate η(mV) b (mV dec-1) Stability (h) Ref. 

α-FeO(OH)/t-Se NFa 219 49 10 (CA @ 1.47 V) This 

Work 

FeSe2 nanoplates  NFa 330  48.1 70 (CA @ 1.67 V) 12 

FeSe2  NFa 245   18 (CP @ 10 mA) 13 

Fe3S4 NFa 251 45.9 12 (CA @ 1.59 V) 1 

Fe3S4 CFPb 230 50 17 (CA) 14 

Fe3S4-Fe7Se8@C NFa 219 45.4 12 (CA @ 1.46 V) 15 

Fe7S8 GCc 270 43 24 (CP @ 10 mA) 16 

FeS IFd 238 - 30 (CA) 17 

FeS   IFd 537 

(j=100) 

- - 17 

FeS2 GCc 450 151 - 18 

FeS2 NFa 189 71 5 (CA) 19 

FeS2 NFa 250 - 5 (CP) 20 

FeB  GCc 296  52.4 - 21 

Fe–B–O@Fe2B  NiFe  273  58.7 - 22 

Fe–B–O@FeB2  NiFe  260  57.9 - 22 

FeP nanorods  CPf 350  63.6 48 (CP) 23 

FeOOH NFa 428  44 10 (CA @ 1.52 V) 24 

FeOOH  GCc  530  67 - 25 

FeOOH  NFa  290  48 11 (CA @ 1.52 V) 26 

FeOOH 

nanosheet  

NFa 390  78.6 24 (CP @ 10 mA) 27 

FeOOH  NFa 280  47 48 (CA @ 1.53 V) 28 

FeNiP  NFa 180  76 24 (CP @ 10 mA) 29 

Fe3W1  Aug 410  51.7 12 (CA) 30 

FeSi NFa 219 39 24 (CP @ 10 mA) 31 

NiFeOx  GCc 350  - 2 (CP @ 10 mA) 32 

FeNi@NGE  NFa 275  41.2 12 (CA) 33 

NiFe  NFa 215   28 10 (CP @ 25 mA) 34 

FeSn2 NFa 197 - 24 (CA @ 1.53 V) 35 

FeCo-Co4N  N-C  280  40 12 (CA) 36 

FeCoWOx  AFh  191  - 550 (CP @ 30 mA) 37 
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Figure S31. Polarization curves obtained with a mixture of α-FeO(OH) + Se (1:1 in wt%) 

and commercial Se powder as control experiments.   

 

Figure S32. (a) LSV Polarization curves, (b) Tafel plot, (c) Double-layer capacitance (Cdl) 

obtained with pristine Fe3Se4/NF, Fe3S4/NF and Fe3O4/NF anode. (d) ECSA normalized 

LSV plots obtained for Fe3Se4/NF and Fe3S4/NF anode.      
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Figure S33. ECSA normalized polarization curves recorded in between 1.2 to 1.6 V vs 

RHE for α-FeO(OH)/t-se, α-FeO(OH)@Fe3S4, Fe3O4 and bare NF electrodes. 

 

Table S3. The electrochemical activity parameters for the pristine Fe3X4/NF electrode 

and electro-modified catalyst after CA/CV activation.  

 

 

 

 

 

 

 

Catalysts η (mV)  

@10mA cm-2 

b (mV dec-1) Cdl (mF cm-2) ECSA (cm2) 

α-FeO(OH)/t-Se 219 49 1.18 0.70 

Fe3Se4 254 63 0.72 0.43 

α-FeO(OH)/Fe3S4 251 45.9 1.14 0.67 

Fe3S4 300 67 0.43 0.25 

Fe3O4 321 61 0.68 0.40 
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Figure S34: PXRD pattern of the α-FeO(OH)/t-Se electrode after 10 h OER CA at 1.5 V vs 

RHE.   

 

Figure S35: OER CA study for 10 h of the α-FeO(OH)@Fe3S4 electrode at 1.53 V vs RHE. 
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Figure S36: PXRD pattern of the α-FeO(OH)@Fe3S4 electrode after 10 h OER CA at 1.53 

V vs RHE.   

 

 

Figure S37: OER CA study for 10 h of the Fe3O4 electrode at 1.62 V vs RHE. 
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Figure S38: PXRD pattern of the Fe3O4 electrode after 10 h OER CA at 1.62 V vs RHE.   
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