Supporting information

Synergetic modulation on multiple transition metals enables

$NiCo_xZn_yP_{(1+x+y)/2}$ microspheres for efficient lithium-ion storage

Wanying Zuo, Runhan Zhang, Yuxi Zou, Xiaoguang Fu, Zhibo Zhao, Bingqi Chen, Zibo Zhu, Hao Wang*, and Meidan Ye*

Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China

*Author to whom correspondence should be addressed: h_wang@xmu.edu.cn, mdye@xmu.edu.cn

Figure S1. XRD patterns of different NiCo_xZn_y-LDH samples.

Figure S2. SEM images of (a-b) NiCo-LDH, (c-d) NiCo_{1/2}-LDH, (e-f) NiCo_{1/2}Zn_{1/6}-LDH, and (g-h) NiCo_{1/2}Zn_{1/2}-LDH.

Figure S3. SEM images of (a, e) NiCoP, (b, f) $NiCo_{1/2}P_{3/4}$, (c, g) $NiCo_{1/2}Zn_{1/6}P_{5/6}$, and (d, h) $NiCo_{1/2}Zn_{1/2}P$. (a-d) Low-resolution SEM images, and (e-h) high-resolution SEM images.

Figure S4. Elemental mappings of NiCoP.

Figure S5. Elemental mappings of $NiCo_{1/2}P_{3/4}$.

Figure S6. Elemental mappings of $NiCo_{1/2}Zn_{1/2}P$.

Figure S7. Metal element contents of $NiCo_x Zn_y P_{(1+x+y)/2}$.

Table S1. Metal and phosphorus element contents of $NiCo_xZn_yP_{(1+x)}$	+v)/2
---	-------

Materials	Atomic (%)			
	Ni	Со	Zn	Р
NCP	29.04	24.56		46.40
$NC_{1/2}P_{3/4}$	39.82	18.80		41.38
NC _{1/2} Z _{1/6} P _{5/6}	27.12	16.98	6.35	49.55
$NC_{1/2}Z_{1/2}P$	27.62	12.58	17.82	41.98

Materials	BET surface area (m ² g ⁻¹)	Average pore diameter (nm)
NCP	31.96	10.29
NC _{1/2} P _{3/4}	22.15	10.53
$NC_{1/2}Z_{1/6}P_{5/6}$	37.05	11.47
$NC_{1/2}Z_{1/2}P$	42.77	11.99

Table S2. Summary of BET results.

Figure S8. XPS analysis of $NiCo_x Zn_y P_{(1+x+y)/2}$ ($NC_x Z_y P_{(1+x+y)/2}$) samples. (a) Full spectra, (b) high-resolution spectra of C 1s.

The calculation of D_{Li}^{+} values from the EIS results:

$$w = 2\pi f \qquad \qquad \mathbf{S}(1)$$

$$Z_w = R + \sigma_w w^{-1/2}$$
 S(2)

where w and f are the angular frequency and frequency, σ_w is the Warburg factor that can be fitted through the slope of $Z_w - w^{-1/2}$.

$$D_{Li^{+}} = \frac{R^2 T^2}{2A^2 n^4 F^4 C^2 \sigma_w^2}$$
 S(3)

 ${}^{D}_{Li}{}^{+}$ is the Li⁺ diffusion coefficient, A is the surface area of the electrode (1.13 cm²), R is the gas constant, T is absolute temperature, n is the number of electrons per molecule during the reaction, F is the concentration of Li⁺ and C is the Faraday constant, respectively.¹

Figure S9. CV curves at 0.1 mV s⁻¹. (a) NiCoP, (b) NiCo $_{1/2}P_{3/4}$, and (c) NiCo $_{1/2}Zn_{1/2}P$.

Figure S10. The cycling performance of $NiCo_xZn_yP_{(1+x+y)/2}$ ($NC_xZ_yP_{(1+x+y)/2}$) electrode-based LIBs at 1.0 A g⁻¹ (details of the 600-715 cycles in Figure 6d).

Figure S11. Electrochemical performance of NiCo_xZn_yP_{(1+x+y)/2} (NC_xZ_yP_{(1+x+y)/2}). (a) Nyquist plots of fresh LIBs (dots: raw data; lines: fitting data), (b) Nyquist plots after different cycles (dots: raw data; lines: fitting data) of NiCo_{1/2}Zn_{1/6}P_{5/6} electrode-based LIBs.

Figure S12. Charge-discharge curves at different current densities. (a) NiCoP, (b) $NiCo_{1/2}P_{3/4}$, (c) $NiCo_{1/2}Zn_{1/6}P_{5/6}$, and (d) $NiCo_{1/2}Zn_{1/2}P$.

Figure S13. Ex-situ SEM images of (a,e) NiCoP, (b,f) $NiCo_{1/2}P_{3/4}$, (c,g) $NiCo_{1/2}Zn_{1/6}P_{5/6}$, and (d,h) $NiCo_{1/2}Zn_{1/2}P$. (a-d) fresh electrode plates, and (e-h) electrode plates after 400 cycles.

Figure S14. Electrochemical characterizations and behavior analysis of $NiCo_xZn_yP_{(1+x+y)/2}$ electrodes. (a-c) CV curves at different scan rates, (d-f) fitting plots of the peak current and scan rate, (g-i) capacitive and diffusion-controlled charge storage contributions at 1 mV s⁻¹: (a, d, g) NiCoP, (b, e, h) NiCo_{1/2}P_{3/4}, and (c, f, i) NiCo_{1/2}Zn_{1/2}P.

Material	Current density (A g ⁻¹)	Specific capacity (mAh g ⁻¹)	Cycle number	Ref.
Co ₂ P QDs/NPC	1.0	431.2	1600	2
CoP@C/C-0.5	0.2	638.8	500	3
Ni/Ni ₂ P@C-NCNTs	0.1	659.8	170	4
Co _x P@NC	1.0	526	600	5
P-NiCoP-NC-600	0.1	858.5	120	6
CoP@C⊂PCF/NCNT	0.2	577	140	7
S				
NiCoP	0.1	567	400	8
Ni _{1.2} Co _{0.8} P	1.0	260	3000	9
Ni₂P⊂pGN	0.1	514	250	10

Table S3. LIBs performance of NiCoP electrodes reported in the literature

NiCo _{1/2} Zn _{1/6} P _{5/6}	0.2	624	400	This work
	1.0	292	2000	
	5.0	145	10000	

References

- 1. S. Li, Y. Liu, X. Zhao, Q. Shen, W. Zhao, Q. Tan, N. Zhang, P. Li, L. Jiao and X. Qu, *Adv. Mater.*, 2021, **33**, 2007480.
- 2. X. D. Ma, C. Ji, X. Y. Yu, Y. K. Liu and X. H. Xiong, ACS Appl. Mater. Intergaces, 2021, 13, 53965-53973.
- 3. H. Su, Y. Zhang, X. F. Liu, F. B. Fu, J. R. Ma, K. Li, W. B. Zhang, J. M. Zhang and D. Li, *J. Colloid Interface Sci.*, 2021, **582**, 969-976.
- 4. Y. R. Jiang, L. Zhao, H. N. Guo, C. H. An, M. Y. Yue, C. Liu and Y. J. Wang, *J. Energy Storage*, 2023, **64**, 107146.
- 5. Y. Liu, X. Que, X. Wu, Q. Yuan, H. Wang, J. Wu, Y. Gui and W. Gan, *Mater. Today Chem.*, 2020, **17**, 100284.
- G. R. Ou, M. Y. Huang, X. M. Lu, I. Manke, C. Yang, J. Qian, X. M. Lin and R. J. Chen, *Small*, 2024, 20, 2307615.
- 7. K. K. Guo, B. J. Xi, R. C. Wei, H. B. Li, J. K. Feng and S. L. Xiong, *Adv. Energy Mater.*, 2020, **10**, 1902913.
- 8. F. F. Li, J. F. Gao, Z. H. He and L. B. Kong, *J. Colloid Interface Sci.*, 2021, **598**, 283-301.
- 9. F. F. Li, J. F. Gao, Z. H. He, N. Brandon, X. H. Li and L. B. Kong, *Energy Storage Mater.*, 2022, **48**, 20-34.
- 10. C. Wu, P. Kopold, P. A. van Aken, J. Maier and Y. Yu, *Adv. Mater.*, 2017, **29**, 1604015.