Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Multi-**step charging/discharging protocol enables stable cycling for lithium argyrodite**-**based all solid-state lithium batteries**

*Pengfei Ren, Xiaodong Wang, Yirui Deng, Zijun Liu, Ruiping Liu**

School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, P. R. China

Experimental Procedures

1 Synthesis of lithium argyrodite electrolyte

Argyrodite sulfide solid electrolyte was prepared via a mechanical ball milling technique and subsequent heat treatment process. Reagent-grade P₂S₅ (99%, Aladdin), Li₂S (99.9%, Aladdin), LiCl (99%, Aladdin) crystalline powders were used as starting materials. The required amount of each starting material was calculated based on the composition $Li_{7-x}PS_{6-x}Cl_{x}$ (x=1.0, 1.3, 1.5, 1.7) and then sealed in ZrO_2 pot containing 50 ZrO_2 balls with a diameter of 5 mm and 20 ZrO_2 balls with a diameter of 10 mm in an Argon filled glovebox $(H_2O, O_2<0.01$ ppm) due to the oxygen- and moisture-sensitive of the raw materials. The total weight of the starting mixture was almost 5.0 g. The sealed pot was rotated at a speed of 500 r/min for 10 h with a planetary ball mill. Then the electrolyte precursor was annealed at 460 °C for 10 h, and finally the $Li_{7-x}PS_{6-x}Cl_{x}$ was obtained.

2 Materials characterization

XRD measurements of the Li_{7-x}PS_{6-x}Cl_x electrolyte were carried out using Cu K α radiation (λ) $= 1.54178$ Å, RIGAKU D/MAX 2550/PC) from 10 $^{\circ}$ to 80 $^{\circ}$. SEM and EDS mapping images were obtained with a Hitachi S-8100 scanning electron microscope. XPS was performed using a Thermo Scientific K-Alpha Spectrometer with a monochromatic Al K α source.

3 Electrochemical measurements

The ionic conductivity of $Li_{7-x}PS_{6-x}Cl_x$ was tested with a Biologic VSP-300 electrochemical workstation from 0.1 Hz to 7 MHz at 25 °C. Solid electrolyte powders were positioned between two stainless steel cylinders of the mold and pressed into electrolyte sheets under a pressure of 300 MPa. Formula 1 was utilized to calculate the ionic conductivity (σ). R denotes the resistance value, L is the thickness of the electrolyte sheets, and S is the area of the electrolyte sheets. The activation energy (E_a) was calculated using the Formula 2, where σ denotes the ionic conductivity, A refers to the prefactor, T stands for the absolute temperature, and kB represents the Boltzmann constant. Formula 3 was used to calculate the electronic conductivity (σ), with Δd represents the thickness of the electrolyte sheet, S represents the area of the electrolyte sheet, U is the polarization voltage, and I representa the steady-state current.

$$
\sigma = L/(R \cdot S) \tag{1}
$$

$$
\sigma = A/T \cdot e^{-Ea/kBT}
$$
 (2)

$$
\sigma = \Delta d / U / (I \cdot S) \tag{3}
$$

To evaluate the electrochemical stability of the $LPSCl_x$, $LPSCl_x$ and VGCF were mixed at a weight ratio of 9:1 and manually ground in an agate mortar for 15 min. CV measurement was performed on a LPSCl+VGCF/LPSCl/Li cell under a pressure of 300 MPa using a Biologic VSP-300 at a scan rate of 0.5 mV s^{-1} from 2.1 to -0.1 V at room temperature.

For symmetric Li/Li cells, 150 mg of solid electrolyte powder was pressed under 500 MPa, and two pieces of treated lithium foil with a diameter of 12 mm were applied to both sides of the pellet. For all‒solid‒state NMC/Li cells, a composite cathode consisting of NMC811, solid electrolyte, and vapor–grown carbon fibers (VGCF) at a weight ratio of 75: 25: 2 was prepared by mixing in an agate mortar. The mixed cathode powder, with a loading of $5\n-6$ mg cm⁻², was then pressed onto one side of the electrolyte pellet under 400 MPa, with the treated lithium foil pressed against the other side. Long-term lithium plating/stripping tests of Li/Li cells at different current densities were conducted using a LAND battery test system at 50 °C, and all–solid–state NMC/Li cells were tested from 2.8 to 4.2 V at 30 or 50 °C with 10 MPa stack pressure.

Figures and Tables

Figure S1. SEM and EDS of (a) LPSCl1.0, (b) LPSCl1.5 power.

Atom	Wyckoff site	X	$\mathbf y$	z
Li	48h	0.3187	0.0268	0.6813
Cl	4a	$\boldsymbol{0}$	$\boldsymbol{0}$	1
S1	4c	0.25	0.25	0.75
${\bf P}$	4 _b	$\boldsymbol{0}$	$\boldsymbol{0}$	0.5
S ₂	16e	0.1196	-0.1425	0.6196

Table S1 Crystallographic data of LPSCl1.0 obtained from Rietveld refinement.

Table S2 Cell parameters of LPSCl1.0 obtained from Rietveld refinement.

		Z
9.8526(17)	9.8526(17)	9.8526(17)

Atom	Wyckoff site	$\mathbf X$	y	Z
Li1	48h	0.3313	0.0076	0.6687
Li2	24g	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$
Cl1	4a	$\boldsymbol{0}$	$\boldsymbol{0}$	$\boldsymbol{0}$
Cl2	4c	0.5	0.5	0.5
S1	4c	0.25	0.25	0.75
${\bf P}$	4b	$\boldsymbol{0}$	$\boldsymbol{0}$	0.5
S ₂	16e	0.1195	-0.1195	0.6195

Table S3 Crystallographic data of LPSCl1.5 obtained from Rietveld refinement.

Table S4 Cell parameters of LPSCl1.5 obtained from Rietveld refinement.

х		
9.7833(16)	9.7833(16)	9.7833(16)

Figure S2. The impedance plots of the $Li_{7-x}PS_{6-x}Cl_x$ (x = 1.0, 1.3, 1.5, and 1.7).

Figure S3. Current–time curve of the $Li_{7-x}PS_{6-x}Cl_x$ (x = 1.0, 1.3, 1.5, and 1.7) sandwiched between two pieces of stainless steel.

Figure S4. XPS spectra of pristine LPSCl1.0.

Figure S5 Charge–discharge curves at different rates of the $Li_{7-x}PS_{6-x}Cl_x$ (x = 1.0, 1.3, 1.5, and 1.7).

					$2.8-3.6$ V $3.6-3.9$ V $3.9-4.2$ V $4.2-4.0$ V $4.0-3.5$ V $3.5-2.8$ V	
CCCD.	$0.3 \, C$	$0.3 \, \mathrm{C}$	$0.3 \, \text{C}$	$0.3 \, \text{C}$	$0.3 \, C$	0.3 C
MCCCD.	03C	0.5C	$0.2 \, \text{C}$	0.3 C	0.5C	$0.2 \, C$

Table S5 Test matrix with different charging/discharging protocols.

Table S6 The total time of charging/discharging of MCCCD and CCCD protocols in the 5th cycle $(ICE > 99.9\%).$

	charging	discharging	total
CCCD	3.1 h	3.1 _h	6.2h
MCCCD	2.6h	2.4h	5.0 h