Electronic Supplementary Information

Unexpected Anion Segregation Enabling High Conductivity in Argyrodite Li_{6-x}PS_{5-x}ClBr_x Solid Electrolytes

Seho Yi,^{*a,b,*[‡]} Taegon Jeon,^{*b,*[‡]} Gyeong Ho Cha,^{*b*} Young-Kyu Han,^{*c,**} and Sung Chul Jung^{*b,**}

^aInstitute of Sustainable Earth and Environmental Dynamics (SEED), Pukyong National University, Busan 48547, Republic of Korea

^bDepartment of Physics, Pukyong National University, Busan 48513, Republic of Korea

^cDepartment of Energy and Materials Engineering and Advanced Energy and Electronic Materials Research Center, Dongguk University-Seoul, Seoul, 04620, Republic of Korea

Corresponding Authors

*E-mail: <u>ykenergy@dongguk.edu</u> and <u>scjung@pknu.ac.kr</u>

‡ Seho Yi and Taegon Jeon contributed equally to this work.

Fig. S1 Five types of LiS_4/LiS_3X tetrahedra (grey) in Li_6PS_5Cl . They share the corners, edges, and faces of neighboring PS_4 tetrahedra (violet) in different ways.

Fig. S2 S, Cl, and Br anions at the 4a/4d sites of models B, C, and E in $Li_{5.75}PS_{4.75}ClBr_{0.25}$. Li cations and PS_4 polyanions are not drawn for clarity.

Fig. S3 Mean-square displacements (d_{ms}) of Li ions as a function of time for models B, C, D and E in Li_{5.75}PS_{4.75}ClBr_{0.25}.

Fig. S4 Logarithmic diffusivities (ln*D*) of Li ions as a function of inverse temperature for models B, C, D, and E in Li_{5.75}PS_{4.75}ClBr_{0.25}.

Fig. S5 Conductivity (σ) and activation energy (E_a) as a function of time for models B, C, D and E in Li_{5.75}PS_{4.75}ClBr_{0.25}.

Fig. S6 (a) Mean-square displacements (d_{ms}) and (b) trajectories of two Li ions of model A in Li_{5.75}PS_{4.75}ClBr_{0.25}, obtained from the AIMD simulation for 300 ps at T = 700 K.

Fig. S7 Mean-square displacements (d_{ms}), logarithmic diffusivities (ln*D*), and conductivity (σ) and activation energy (E_a) of models A' and D' in Li_{5.75}PS_{4.75}Cl_{1.25}.

Fig. S8 S and Cl anions at 4a/4d sites in two Li₆PS₅Cl structures with and without anion segregation. The Li₆PS₅Cl structure without anion segregation was obtained from ref. 1. Li cations and PS₄ polyanions are not drawn for clarity.

Table S1 Lattice parameters of models A, B, C, D, and E in $Li_{5.75}PS_{4.75}ClBr_{0.25}$. The 2 × 1 × 1 tetragonal unit cell was used for model A, and the 1 × 1 × 1 cubic unit cell was used for models B, C, D, and E. Volumes are given per 1 × 1 × 1 unit cell.

Model	a (Å)	<i>b</i> (Å)	c (Å)	α (deg)	β (deg)	γ (deg)	Volume (Å ³)
А	19.49	9.81	9.74	90.8	90.2	90.9	930.5
В	9.82	9.70	9.69	89.5	90.6	89.9	923.3
С	9.73	9.73	9.80	90.8	90.0	87.7	926.6
D	9.95	9.66	9.73	90.1	90.7	90.8	934.6
E	9.78	9.84	9.71	90.7	90.0	88.4	933.5

Table S2 Diffusion properties of models A' and D' in $Li_{5.75}PS_{4.75}Cl_{1.25}$. D_0 is the pre-exponential factor, D is the diffusivity at T = 300 K, E_a is the activation energy, and σ is the conductivity at T = 300 K.

Model	$D_0 ({ m cm}^2~{ m s}^{-1})$	$D (\rm{cm}^2 \rm{ s}^{-1})$	$E_{\rm a}({\rm eV})$	$\sigma ({ m mS~cm^{-1}})$
A'	$4.7 imes 10^{-4}$	$6.0 imes 10^{-8}$	0.23	9.2
D'	8.6×10^{-4}	5.1×10^{-9}	0.31	0.8

References

1 T. Jeon, G. H. Cha and S. C. Jung, *J. Mater. Chem. A*, 2024, **12**, 993–1002.