Frustrated lewis pair chemistry in 2D CeO₂ for efficient alkaline hydrogen evolution

Kaisi Liu,‡^a Tongtong Liu,‡^a Xinyi Wu,‡^a Jiao Dai,^a Qingjun Chen,^b Jun Wan,^{*a} Lei Liu^{*a}

^{*a*} Center for Computational Chemistry, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China

^b Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China

‡ These authors contributed equally to the work.

* Corresponding authors.

E-mail addresses: wanj@wtu.edu.cn (J. Wan); liulei@wtu.edu.cn (L. Liu)

Supplementary materials: 1. Fig. S1 to S7 2. Table S1 to S3

Fig. S1. ΔG_H of the HER on (a) CeO₂ (111)-ideal facet and on the Ce_I-O_{IV} and Ce_I-O_{VI} FLPs on the CeO₂ (111)-2O_v facet.

Fig. S2. Charge density difference maps of water dissociation on (a) Ce_I-O_V FLP sites of CeO₂ (111)-O_v facet and (b) Ce_I-O_{IV} and (c) Ce_I-O_{VI} of CeO₂ (111)-2O_v facet.

Fig. S3. HRTEM images of (a) CeO₂-I, (b) CeO₂-II and (c) CeO₂-III. (d)The SEM images of CeO₂-I after testing electrocatalytic properties.

Fig. S4. Full spectra of (a) CeO₂-I, (b) CeO₂-II and (c) CeO₂-III.

Fig. S5. CV measurements in a non-faradic current region (1.14-1.24 V) in 1.0 M KOH solution at scan rates of 2 to 20 mV s⁻¹ of (a) CeO₂-I, (b) CeO₂-II and (c) CeO₂-III.

Fig. S6. Comparison of Nyquist plots for CeO₂-I, CeO₂-II, and CeO₂-III.

Fig. S7. The SEM images of CeO_2 -I after 15 hours of chronopotentiometric measurements.

2. Table S1 to S3

Table S1. Bader charge population of the atoms on the surface of $CeO_2(111)$.

Bader charge population / e

A 4			
Atom	Ideal CeO ₂ (111)	CeO ₂ (111) with one oxygen vacancy	CeO ₂ (111) with two oxygen vacancy
Ce _I	+2.246	+2.206	+2.160
Ce _{IIIb}	+2.246	+2.205	+2.199
Ce _{IIb}	+2.246	+2.259	+2.199
Ce _{IIIa}	+2.246	+2.202	+2.192
Ce _{IIIb}	+2.246	+2.241	+2.192
Ce _{IVa}	+2.246	+2.256	+2.253
Ce _{IVb}	+2.246	+2.244	+2.251
OI	-1.132	/	/
OII	-1.132	-1.147	/
O _{III}	-1.132	-1.147	-1.159
O _{IV}	-1.132	-1.147	-1.148
O _{Va}	-1.137	-1.178	-1.185
$\mathbf{O}_{\mathbf{Vb}}$	-1.137	-1.183	-1.186
O _{VIa}	-1.132	-1.151	-1.155
O _{VIb}	-1.132	-1.142	-1.155
O _{VIIa}	-1.137	-1.183	-1.251
O _{VIIb}	-1.137	-1.178	-1.175
O _{VIIe}	-1.137	-1.123	-1.172

Surface	Ce _I -O _{IV}	Ce _I -O _V	Ce _I -O _{VI}
CeO ₂ (111)-ideal	ТН 4.377 ФОН		
CeO2 (111)-Ov	0H 0H		
CeO ₂ (111)-2O _v		4.24 A H OH	

Table S2. Top views of structures related to water dissciation on the CLP of $CeO_2(111)$ -ideal, and the FLPs of $CeO_2(111)$ -O_v and $CeO_2(111)$ -2O_v.

	Bader charge population / <i>e</i>			
Atom -	Ideal CeO ₂ (111)	CeO ₂ (111) with one oxygen vacancy	CeO ₂ (111) with two oxygen vacancy	
Ce _I	+2.351	+2.262	+2.251	
CeIIIb	+2.244	+2.243	+2.269	
Ce _{IIb}	+2.245	+2.228	+2.274	
Ce _{IIIa}	+2.245	+2.234	+2.225	
CeIIIb	+2.242	+2.233	+2.203	
Ce _{IVa}	+2.238	+2.285	+2.274	
Ce _{IVb}	+2.239	+2.233	+2.269	
OI	-1.085	/	/	
O _{II}	-1.094	-1.149	/	
O _{III}	-1.109	-1.145	-1.153	
O _{IV}	-1.268	-1.270	-1.158	
O_{Va}	-1.109	-1.169	-1.305	
$\mathbf{O}_{\mathbf{Vb}}$	-1.116	-1.145	-1.133	
O _{VIa}	-1.135	-1.144	-1.153	
O _{VIb}	-1.139	-1.140	-1.150	
O _{VIIa}	-1.139	-1.145	-1.181	
O _{VIIb}	-1.115	-1.127	-1.144	
O _{VIIc}	-1.116	-1.146	-1.168	

Table S3. Bader charge population of surface atoms after water dissociation by $CeO_2(111)$.