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1. Tables and Figures 

Table S1 Enzyme loading efficiency of biocomposites.

GOx/HRP model GOx loading efficiency (%) HRP loading efficiency (%)

GOx/HRP-PDADMAC@ZIF-8 6.0±0.80 43.6±2.34

GOx-PDADMAC/HRP@ZIF-8 9.0±0.04 30.4±0.43

GOx/HRP@ZIF-8 6.8±0.34 40.4±1.72

GOx-PDADMAC/HRP-

PDADMAC@ZIF-8 8.69±0.08 36.40±0.32

Pro/GOx model GOx loading efficiency (%) Pro loading efficiency (%)

Pro/GOx-PDADMAC@ZIF-8 5.85±0.80 13.69±0.80

Pro-PDADMAC/GOx@ZIF-8 3.30±0.19 13.50±0.79

Pro/GOx@ZIF-8 6.15±0.10 24.30±1.60

Pro/ADH model Pro loading efficiency(%) ADH loading efficiency(%)

Pro/ADH-PDADMAC@ZIF-8 14.25±0.8 18.75±0.98

Pro-PDADMAC/ADH@ZIF-8 14.40±0.53 17.40±1.90

Pro/ADH@ZIF-8 10.80±0.20 18.15±0.20
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Table S2 The catalytic kinetic parameters of enzyme-MOF.

Biocomposites Km (mM) Vmax 

(μM/min)

K (min-1×10-5)

(Vmax/ Km）

Kenzyme-MOF/Kfree 

enzyme (Times)

Relative activity 

(Times)

GOx/HRP model

GOx-PDADMAC/HRP@ZIF-8 1802.00 22.31 1.24 0.27 1.72 

GOx-PDADMAC/HRP 915.70 41.80 4.56

GOx/HRP-PDADMAC@ZIF-8 1754.00 18.82 1.07 0.22 1.38

GOx/HRP-PDADMAC 1018.00 50.25 4.94

GOx/HRP@ZIF-8 275.90 2.451 0.89 0.16 1.00

GOx/HRP 784.60 44.12 5.62

Pro/GOx model

Pro-PDADMAC/GOx@ZIF-8 38.63 2.21 5.72 1.14 1.69

Pro-PDADMAC/GOx 23.69 1.19 5.03

Pro/GOx-PDADMAC@ZIF-8 22.44 1.13 5.02 1.01 1.50

Pro/GOx-PDADMAC 26.77 1.33 4.96

Pro/GOx@ZIF-8 31.33 1.24 3.97 0.68 1.00

Pro/GOx 25.25 1.48 5.86

Pro/ADH model

Pro/ADH-PDADMAC@ZIF-8 23.57 35.88 152.23 3.99 14.85

Pro/ADH-PDADMAC 24.34 9.29 38.20

Pro-PDADMAC/ADH@ZIF-8 31.60 5.94 18.80 0.44 1.62

Pro-PDADMAC/ADH 23.76 10.26 43.24

Pro/ADH@ZIF-8 23.95 3.23 13.54 0.27 1.00

Pro/ADH 23.82 11.96 50.23
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Table S3 Proportional peak area summary of deconvoluted amide I region in enzyme-MOF versus 

free enzymes. 

Biocomposites α-helix 

(%)

β-sheet 

(%)

intermolecular 

β-sheet (%)

β-turn 

(%)

random coil 

(%)

GOx/HRP 31.12 7.95 6.58 15.11 39.24

GOx-PDADMAC/HRP 31.23 17.10 13.75 11.48 26.45

GOx/HRP@ZIF-8 45.04 6.05 6.71 24.22 17.98

GOx-PDADMAC/HRP@ZIF-8 26.13 7.07 7.01 33.94 25.84

GOx/HRP-PDADMAC@ZIF-8 31.42 8.86 24.11 27.90 7.70
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Table S4 Comparison of this work to other reported methods.

MOF Enzymes Method Enhanced activity Ref.

ZIF-8 GOx, HRP, 

Pro, ADH

PDADMAC-modified 

enzyme induced core-shell 

structure

1.69-14.85 times compared to 

unmodified bi-enzyme@ZIF-8.

This 

work

ZIF-8 GOx, HRP, 

Pro, ADH

Stepwise encapsulation of 

GOx and HRP by epitaxial 

shell-by-shell overgrowth

0.9-15.4 times compared to 

GOx/HRP@ZIF-8 and 

Pro/ADH/NAD+@ZIF-8.

2

ZIF-8 GOx, HRP, 

β-

galactosidase

Peptide-induced MOF 

super-self-assembly

4.4-7.3 times compared with the 

unassembled enzyme-MOF. 

3

ZIF-8 GOx, HRP Microfluidic techniques About 3 times compared with the 

bulk solution–synthesized 

enzyme-MOF composites.

4

ZIF-8 GOx, Hemin Dual confinement 1.7 times compared to the 

GOx/Hemin@ZIF.

5

ZIF-L GOx, HRP,

cofactor-

dependent 

enzyme

Hollow MOF via tannic 

acid etching

Up to 16-fold higher enzymatic 

activity than the pristine 

biocatalytic MOFs

6



6

GOx-P
DADMAC (1

:0.
36

)

GOx-P
DADMAC (1

:0.
54

)

GOx-P
DADMAC (1

:2.
91

)

GOx-P
DADMAC (1

:5.
81

)

GOx-P
DADMAC (1

:8.
70

)

0

50

Ze
ta

 P
ot

en
tia

l (
m

V)

Figure S1. Zeta potential analysis of GOx modified with PDADMAC at various molar ratios. 

Figure S2. Synthesis progress of GOx-PDADMAC/HRP@ZIF-8 (left tube) and GOx/HRP@ZIF-8 

(right tube). 
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Figure S3. Zeta potential change during the synthesis of GOx-PDADMAC/HRP@ZIF-8 with the 

sequential addition of reagents.

 

Figure S4. SEM images of as-synthesized GOx/HRP-PDADMAC@ZIF-8 (a), GOx-

PDADMAC/HRP@ZIF-8 (b), GOx/HRP@ZIF-8 (c). The scale bar in the main images is 1 µm. 
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Figure S5. SEM images of ZIF-8. The scale bar in the main images is 1 µm.
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Figure S6. XRD pattern of synthesized ZIF-8.
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Figure S7. Comparison of enzymatic activity between enzyme-MOF samples and their free enzyme 

counterparts. (a) Plot of reaction velocity, V, against substrate [glucose] for GOx-

PDADMAC/HRP@ZIF-8 and free GOx-PDADMAC/HRP, with (b) and (c) illustrating the DAP 

change over time at different glucose concentrations for GOx-PDADMAC/HRP@ZIF-8 and GOx-

PDADMAC/HRP, respectively. (d) Plot of reaction velocity, V, against substrate [glucose] for 

GOx/HRP-PDADMAC@ZIF-8 and free GOx/HRP-PDADMAC, with (e) and (f) illustrating the DAP 

change over time at different glucose concentrations for GOx/HRP-PDADMAC@ZIF-8 and free 

GOx/HRP-PDADMAC; while (g) Plot of reaction velocity, V, against substrate [glucose] for 

GOx/HRP@ZIF-8 and free GOx/HRP, with (h) and (i) illustrating the DAP change over time at 

different glucose concentrations for GOx/HRP@ZIF-8 and free GOx/HRP. The same amount of 

enzymes, based on loading efficiency, was used for the comparison.
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Figure S8. The catalytic activity of enzyme-MOF biocomposites across a pH range (pH 2.33 to 8.42). 

(a) The relative catalytic activity with neutral pH is normalized to 100%. (b)The change in absorbance 

over time.
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Figure S9. CLSM images of (a) GOx-PDADMAC/HRP@ZIF-8, (b) GOx/HRP-PDADMAC@ZIF-

8, (c) GOx/HRP@ZIF-8. (i) GOx labeled with ATTO 633 (red), (ii) HRP labeled with ATTO 550 

(green), and (iii) are the merged images. The scale bar in the main images is 3 µm, while the scale bar 

of the insets bar is 1 µm.
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Figure S10. Calculated activity rate of GOx-PDADMAC at varying PDADMAC concentrations and 

free GOx enzyme according to Figure 3d.

Figure S11. GOx loading efficiency in GOx@ZIF-8 and GOx@PDADMAC-ZIF-8 (a). Calculated 

enzyme activity rate of GOx@ZIF-8 and GOx-PDADMAC@ZIF-8 based on the same amount of GOx 

in each sample according to Figure 3e.



13

 

Figure S12. The comparison of enzymatic activity GOx-PDADMAC/HRP-PDADMAC@ZIF-8, 

GOx/HRP@ZIF-8, and their free counterparts. The same amount of enzymes, based on loading 

efficiency, was used for the comparison. (a) Time-dependent absorbance measurements for each 

sample. (b) Relative activity comparison between the modified and unmodified enzyme-MOFs.

Figure S13. FTIR spectra of GOx-PDADMAC/HRP@ZIF-8, GOx/HRP-PDADMAC@ZIF-8, 

GOx/HRP@ZIF-8, GOx/HRP and GOx/HRP/PDADMAC. Amide I regions (1600-1700 cm⁻¹) were 

used to analyze their tertiary structure.
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Figure S14. Deconvoluted FTIR spectra of the Amide I region (1600-1700 cm⁻¹) for GOx/HRP-

PDADMAC@ZIF-8 (a), GOx/HRP@ZIF-8 (b), GOx/HRP (c), GOx-PDADMAC/HRP (d). The red 

line represents the simulated fit, the black line indicates the baseline-corrected experimental spectra 

and the lower black line shows the second derivative of the spectra.
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Figure S15. SEM images of as-synthesized Pro/GOx-PDADMAC@ZIF-8 (a), Pro-

PDADMAC/GOx@ZIF-8 (molar ratio of Pro to PDADMAC is 1: 1.13) (b), Pro/GOx@ZIF-8 (c). The 

scale bar in the main images is 1 µm.
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Figure S16. XRD patterns of simulated ZIF-8, synthesized ZIF-8, GOx/Pro@ZIF-8, Pro-

PDADMAC/GOx@ZIF-8 and Pro/GOx-PDADMAC@ZIF-8.
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Figure S17. Zeta potential analysis of Pro and GOx modified with PDADMAC at various molar ratios
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Figure S18. Comparison of enzymatic activity between enzyme-MOF samples and their free enzyme 

counterparts. (a) Plot of reaction velocity, V, against substrate [1,2,3,4-Tetra-O-acetyl-beta-D-

glucopyranose] for Pro-PDADMAC/GOx@ZIF-8 and free Pro-PDADMAC/GOx, with (b) and (c) 

illustrating the DAP change over time at different substrate concentrations for Pro-

PDADMAC/GOx@ZIF-8 and Pro-PDADMAC/GOx, respectively. (d) Plot of reaction velocity, V, 

against substrate [1,2,3,4-Tetra-O-acetyl-beta-D-glucopyranose] for Pro/GOx-PDADMAC@ZIF-8 

and free Pro/GOx-PDADMAC, with (e) and (f) illustrating the DAP change in over time at different 

concentrations for Pro/GOx-PDADMAC@ZIF-8 and free Pro/GOx-PDADMAC; while (g) Plot of 

reaction velocity, V, against substrate [1,2,3,4-Tetra-O-acetyl-beta-D-glucopyranose] for 

Pro/GOx@ZIF-8 and free Pro/GOx, with (h) and (i) illustrating the DAP change over time at different 

concentrations for Pro/GOx@ZIF-8 and free Pro/GOx.
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Figure S19. CLSM images of (a) Pro-PDADMAC/GOx@ZIF-8, (b) Pro/GOx-PDADMAC@ZIF-8, 

(c) Pro/GOx @ZIF-8. (i) GOx labeled with ATTO 633 (red), (ii) Pro labeled with ATTO 550 (green), 

and (iii) are the merged images. The scale bar in the main images is 5 µm, while the scale bar of the 

insets bar is 500 nm.
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Figure S20. Zeta potential of ADH and Pro modified with PDADMAC at different molar ratios.
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Figure S21. SEM images of as-synthesized Pro/ADH-PDADMAC@ZIF-8 (a) Pro-

PDADMAC/ADH@ZIF-8 (molar ratio of Pro to PDADMAC is 1: 1.36); (b) Pro/ADH-PDADMAC 

@ZIF-8 (molar ratio of ADH to PDADMAC is 1: 12.73); (c) Pro-ADH@ZIF-8. The scale bar in the 

main images is 1 µm.
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Figure S22. XRD patterns of simulated ZIF-8, synthesized ZIF-8, Pro/ADH@ZIF-8, Pro-

PDADMAC/ADH@ZIF-8 and Pro/ADH-PDADMAC@ZIF-8.
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Figure S23. Comparison of enzymatic activity between enzyme-MOF samples and their free enzyme 

counterparts. (a) Plot of reaction velocity, V, against substrate [L-Norvaline Ethyl Ester] for Pro-

PDADMAC/ADH@ZIF-8 and free Pro-PDADMAC/ADH, with (b) and (c) illustrating the NADH 

change over time at different substrate concentrations for Pro-PDADMAC/ADH@ZIF-8 and Pro-

PDADMAC/ADH, respectively. (d) Plot of reaction velocity, V, against substrate [L-Norvaline Ethyl 

Ester] for Pro/ADH-PDADMAC@ZIF-8 and free Pro/ADH-PDADMAC, with (e) and (f) illustrating 

the NADH change over time at different substrate concentrations for Pro/ADH-PDADMAC@ZIF-8 

and free Pro/ADH-PDADMAC; while (g) Plot of reaction velocity, V, against substrate [L-Norvaline 

Ethyl Ester] for Pro/ADH@ZIF-8 and free Pro/ADH, with (h) and (i) illustrating the NADH change 

over time at different substrate concentrations for Pro/ADH@ZIF-8 and free Pro/ADH.
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Figure S24. CLSM images of (a) Pro-PDADMAC/ADH@ZIF-8; (b) Pro/ADH-PDADMAC@ZIF-8; 

(c) Pro/ADH@ZIF-8. (i) ADH labeled with ATTO 633 (red), (ii) Pro labeled with ATTO 550 (green), 

and (iii) are the merged images. The scale bar in the main images is 3 µm, while the scale bar of the 

insets bar is 500 nm.
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Figure S25. Relative enzymatic activities of GOx/HRP@ZIF-8, and free GOx/HRP enzymes under 

different stress conditions: exposure to 60°C for 1 hour, DMSO for 1 hour, and protease (0.2 mM) 

treatment for 2 hour.
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Figure S26. Relative enzymatic activities of Pro/GO@ZIF-8, and free GOx/Pro enzymes under 

different stress conditions: exposure to 60°C for 1 hour, DMSO for 1 hour, and protease (0.2 mM) 

treatment for 2 hours.



24

Control 60 ℃ DMSO Protease
0

50

100

R
el

at
iv

e 
ac

tiv
ity

 (%
)

ADH/Pro-PDADMAC@ZIF-8

Pro/ADH@ZIF-8

Pro/ADH

Figure S27. Relative enzymatic activities of Pro-PDADMAC/ADH@ZIF-8, Pro/ADH@ZIF-8, and 

free Pro/ADH enzymes under different stress conditions: exposure to 60°C for 1 hour, DMSO for 1 

hour, and protease (0.2 mM) treatment for 2 hours.

Figure S28. The catalytic activity of enzyme-MOF biocomposites in various organic solvents. (a) The 

relative catalytic activity. (b) The time-dependent absorbance changes across different conditions. 
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Figure S29. Thermal stability of GOx-PDADMAC/HRP@ZIF-8 at different temperatures. (a) 

Relative activity after incubation for one hour at 25 °C, 40 °C, 50 °C, 60 °C, and 70 °C. (b) Time-

dependent absorbance at 420 nm for different temperature conditionS.
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Figure S30. Relative activity of Pro-PDADMAC/ADH@ZIF-8 and Pro/ADH@ZIF-8 of catalytic 

reusability in five consecutive cycles.
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Figure S31. The long-term stability of enzyme-MOF biocomposites stored at 4 °C for 5 days and 50 

days. (a) Their relative catalytic activity. (b) The change in absorbance over time at different storage 

durations.
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