Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Duo Zhang^a, Ruijin Sun^a*, Zhaolong Liu^b, Haodong Li^a, Munan Hao^b, Yuxin Ma^b, Ke Ma^b, Dezhong Meng^a, Zhiyuan Zheng^a, Yibo Xu^a, Xu Chen^b, Qiu Fang^b, Xuefeng Wang^b, Linjie Dai^c, Changchun Zhao^a*, Shifeng Jin^b

S1. BBNPC crystal samples and structure.

S2. (a) & (b) SEM morphology and EDS elemental content of BBPNC. (c) & (d) SEM morphology and EDS elemental content of BPPC.

S4.BBNPCXPS data.

S5.[001] Directional single-crystal diffraction spots.

Formula	Ba ₆ Pb _{3.2} P ₆ O ₂₄ Cl ₂			
fw	2080.11			
Space group	P6 ₃			
a,Å	10.2299			
b,Å	10.2299			
c,Å	7.5680			
α,β,deg	90			
γ ,deg	120			
V , Å ³	685.89			
Z	1			
D _{calcd} ,g cm ⁻³	5.036			
GOF on F ²	1.068			
R1, wR2 $[I > 2s(I)]$	0.0528, 0.0984			
R1, wR2 (all data)	0.0343, 0.1008			

Tabel.S1	Cell parameters	of Ba ₆ Pb _{3.2}	$_{2}P_{6}O_{24}Cl_{2}$.

Tabel.S2 Cell parameters of Ba ₆ Bi ₂ Na ₂ P ₆ O ₂₄ Cl ₂ .				
Formula	Ba ₆ Bi ₂ Na ₂ P ₆ O ₂₄ Cl ₂			
fw	1928.70			
Space group	P6 ₃			
a,Å	10.0732			
b,Å	10.0732			
c,Å	7.4666			
α,β,deg	90			
γ,deg	120			
V, Å ³	656.13			
Z	1			
D _{calcd} ,g cm ⁻³	4.881			
GOF on F ²	1.086			
R1, wR2 $[I > 2s (I)]$	0.0419, 0.0911			
R1, wR2 (all data)	0.0373, 0.0938			

S6.SHG signal strength of BPPC in the 500-600 nm interval under 200-400 K.

S7. (a) & (b)BPPC frequency dependence curve of real and imaginary parts of dielectric constant at 170-800 K.

S8. (a) Calculation of electric dipole moments and Fourier triangular wave fitting of dipole moment vibrations for single crystal tests at 20 K intervals from 120-400 K. (b) The electric dipole moment components in directions a, b, and c are calculated for single crystal experiments at intervals of 20 K in the range of 120-400 K.

Atom(P6 ₃ /m)	x (Å)	Y(Å)	z (Å)	Occ	Site
Pb	0.33333	0.66667	0.00002	0.80	4f
Ba	0.26025	0.25160	0.25000	1.00	6h
Р	0.03710	0.41040	0.25000	1.00	6h
Cl	0.00000	0.00000	0.00000	1.00	2b
0	0.48460	0.13540	0.25000	1.00	6h
0	0.12530	0.58590	0.25000	1.00	6h
0	0.08760	0.35850	0.08450	1.00	12i

Table S3. P6₃/m simulation of structural atomic positions

S9. P6₃ vs. P6₃/m space group comparison.

S10. Debye model, Einstein model, Debye-Einstein model specific heat fitting structure.

The Debye-Einstein Model various fitting parameters (1):

 C_p

(1)

Where N, θ_{Debye} and $\theta_{E1(E2)}$ are Avogadro number, characteristic Debye temperature and characteristic Einstein temperature respectively. The parameter a is the proportion of Debye model. The parameter b is the proportion of Einstein model.

S11.Circulating current response and pyroelectric coefficient at different temperatures

Table S4. Comparison of room-temperature pyroelectric-related propertiesbetween BPPC and other famous inorganic pyroelectrics.

	<u>3' - v) v</u>	<u>rs - v</u>	<u> </u>	4 8		F	Б	F
Materials	ps	C_{v}	3	tano	Fi	F _v	FD	FΕ
	μC/m	MJ	(10	(10	10 ⁻¹⁰	m²/C	10-5	10 -11
	2/K	/m ³ /K	kHz)	kHz)	m/V		Pa ^{1/2}	m³/J
BPPC	108	1.475	10.47	0.002	0.732	0.7	4.935	5.12
LiTaO ₃ 1	190	3.2	47	0.005	0.59	0.14	1.22	0.75
PZT ²	350	3.2	471	0.005	1.09	0.026	0.71	0.25
LiNbO ₃ 1	96	2.7	31		0.35	0.14		0.41
BaTiO ₃ ³	200	2.5	1200		0.8	0.008		0.53
ZnO^4	9.4	3.1	11		0.03	0.03		0.08
$Li_2B_4O_7^5$	30	3.3	2	0.03	0.09	0.53	0.37	0.93
SBN ⁵	550	2.2	400	0.003	2.48	0.07	2.26	1.74
NaNO ₂ ⁵	40	2.2	4		0.182	0.514		0.93
PMN-	980	2.44	650	0.000	4.02	0.062	7.05	2.5
28PT:				5				
Mn ⁶								
34PIN-	705	2.5	525	0.002	2.82	0.054	2.75	1.5
34PMN-								
32PT ⁶								

where $F_i = p_s/C_v$, $F_v = p_s/\epsilon'C_v$, $F_D = p_s/C_v(\epsilon' \tan \delta)^{1/2}$, $F_E = p_s^{-2}/\epsilon'(C_v)^2$

1. A. Bartasyte, S. Margueron, T. Baron, S. Oliveri and P. Boulet, *Advanced Materials Interfaces*, 2017, **4**, 1600998.

^{2.} S. Zhang and F. Li, *Journal of Applied Physics*, 2012, 111.

- 3. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. Rossetti and J. Rödel, *Applied Physics Reviews*, 2017, **4**.
- 4. M. C. Larciprete and M. Centini, *Applied Physics Reviews*, 2015, 2.
- 5. X. Li, S.-G. Lu, X.-Z. Chen, H. Gu, X.-s. Qian and Q. Zhang, *Journal of Materials Chemistry C*, 2013, **1**, 23-37.
- 6. P. Yu, Y. Ji, N. Neumann, S.-g. Lee, H. Luo and M. Es-Souni, *IEEE transactions on ultrasonics, ferroelectrics, and frequency control*, 2012, **59**, 1983-1989.