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Computational Methods; MD data to conductivity
Mean square displacements (MSDs) shown in Fig. 4(a) were calculated as

MSD(�) = 1
	 
 �� � − �� 0 �

�
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where �� � is the position vector of the i-th mobile ion at time t, and N is the total
number of the mobile ions. To calculate diffusion coefficient D, we adopted the
time-averaging form [1] as

�(∆�) = 1
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where the bracket represents averaging over t, which is intended for a good
statistics. We calculate D ∆�  in terms of ∆t and obtain a well converged D that is
almost insensitive to ∆t as shown in Fig. 4(b). The ionic conductivity, σ, can be
calculated using Nernst-Einstein relationship as

� = ���

��� �
where n is the number of mobile ions per MD cell and q is the ionic charge.
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Figure S1. Example of the total energy histogram of an MD
trajectory divided into three regions as left-edge, center, and right-
edge. The left- and right-edges correspond to rare structures and
the center major structures.
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Figure S2. XRD patterns for (a) 200 peak for orthorhombic TlF
and (b) 301 peak for cubic TlF.
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Figure S3. Rietveld refinement on synchrotron XRD pattern of
cubic TlF.
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Figure S4. SEM-EDX mapping images of cubic TlF. Scale bar:
1 µm.

1 µm
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Figure S5. TG-DTA curves for cubic TlF.
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Figure S6. Tl 4f7/2 XPS spectrum at room temperature for cubic
TlF. The symbols and filled area show the experimental data and
the fitted results, respectively.
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Figure S7. Room-temperature electrical conductivity as a function
of nominal x of TlFx. The solid line is the guide to the eyes.
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Figure S8. Fluoride-ion conductivity of cubic TlF upon heating
and cooling, and orthorhombic TlF upon heating.
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Figure S9. Arrhenius plot of the electronic conductivity for cubic
TlF.
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Figure S10. Photograph of the cubic TlF powder after the
chemical fluorination using XeF2.
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Figure S11. Electronic density of states of cubic TlF. The
Fermi level corresponds to 0 eV.
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Pt|TlF|Pb/PbF2, 1 mV/s

Figure S12. Electrochemical stability window of cubic TlF. The
estimated stability limit is approximately 3.0 V at room
temperature.
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Table S1. Refined crystal parameters, space group, lattice
parameters, reliability factors and agreement factor for cubic TlF at
room temperature. g, occupancy; B, atomic displacement
parameter. Here, the reliability factors RWP and RI are the weighted
profile and integrated intensities, respectively.

B (Å2)zyxgSiteAtom

0.32200012aTl

5.1951/201/40.167(1)12dF

Unit cell: Cubic Im3m, 
a = b = c = 4.6024(3) Å, 
RWP = 5.75%, RI = 3.94%, S = 1.46.
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