Supporting Information

Versatile hydrogel towards coupling of energy harvesting and storage for self-powered round-the-clock sensing

Zhuo Wang^{a,b}, Quanhong Hu^{b,d}, Shaobo Wang^{b,d}, Zhirong Liu^{b,c}, Chuyu Tang^{b,c}, Linlin Li^{a,b,c,d} *

^aGuangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou 510555, China.

^bBeijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China

^cSchool of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

^d Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning 530004, P. R. China

*Email address: lilinlin@binn.cas.cn

Figure S1. Conductivity of the PAM and PPG hydrogels.

Figure S2. Electrical outputs (a) V_{oc} , (b) I_{sc} and (c) Q_{sc} of the TENG using the PAM hydrogel as the electrode.

Figure S3. (a) V_{oc} , (b) I_{sc} and (c) Qoc of the PPG-TENG under different frequencies.

Figure S4. (a) V_{oc} and (b) Q_{oc} of the PPG-TENG under different mechanical forces.

Figure S5. Fast responsive and recovery time of the PPG-TENG.

Figure S6. Voc of PPG-TENG under different strain states.

Figure S7. (a) Photograph of carbon fiber (CF) and PPy coated carbon fiber (PPy/CF), (b, c) SEM images PPy/CF with different magnifications.

Figure S8. GCD curves of PAMK and PPGK as electrolytes of the SCs.

Figure S9 CV curves of the SC after different washing cycles.