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Fig. S1. XRD (a) and EDX (b) patterns of CuBTC (a) and ZIF67@CuBTC (a and b).

Fig. S2. SEM images of CuBTC (a and b) and ZIF67@CuBTC (c and d).
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Fig. S3. UV-Vis-NIR spectra of the CuxO and Co3O4@CuxO samples.

Fig. S4. Tafel plots of OER (a) and ORR (b) for the CuxO and Co3O4@CuxO samples 
obtained under light on and off conditions, respectively.
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Fig. S5. CV curves collected from the non-Faradaic regions of the CuxO (a) and 
Co3O4@CuxO (b) samples, respectively.

.

Fig. S6. Optical images of the building components of a ZAB cell: the air cathode (a, 
composed of water-proof membrane, nickel foam, and Co3O4@CuxO/PTFE/ acetylene 
black film), and the Zn foil anode (b, with a punched hole for light passing through). 
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Fig. S7. The SEM image (a) and XRD pattern (b) of the Co3O4@CuxO sample after 
cycling test.

Fig. S8. A demonstration of a red LED lighted up by two connected ZAB cells (a), and 
power densities of the Co3O4@CuxO-based ZABs obtained with light on and off 
conditions, respectively. The power densities were calculated by the discharge current 
densities shown in Fig. 4c.
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Fig. S9. Optimized atomic configurations of OOH* adsorbed on Co3O4(311) (a), 
CuO(-111) (b), Cu2O(200) (c), and Co3O4@CuxO heterojunction(d), respectively.

Fig. S10. Free energy diagrams at 0.68 V of OER processes on CuxO and
Co3O4@CuxO, respectively.
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Table S1. A comparison of the air cathode materials for ZABs with and without light 
enhancements.

Charge voltage

/VTyp

e

Cathode materials

Dark Light

Current 

density

/mA cm-2

Light 

enhancement

/%

Cycling

/h

Capacity

/ mA h g-1

Power 

density

/mW 

cm-2 

Ref.

Co3O4@CuxO 1.837 1.748 0.1 31 160
759.1

2
76

This 
work

α-Fe2O3 1.97 1.43 0.1 27.4 / 598.7 75.49 [1]

BiVO4 1.96 1.20 0.1 38.8 / 538.5 69.24 [1]

Co3O4 2.10 2.00 2 5.00 70 769 / [2]

NiCo2S4 1.97 1.92 2 2.54 12 734 / [3]

Ni2P5@NCNT 1.94 1.90 10 2.10 8.8 640 190 [4]

PTTH 2.08 1.92 0.1 7.69 316 / / [5]

CuO/ZnO 2.27 1.5 0.05 33.7 3 333.5 34.01 [6]

TiO2@In2Se3@Ag3P

O4
/ 0.64 0.1 / 210

/ 13.1/
[7]
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 Z
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g-C3N4-CuZIF-67 2.01 1.94 2 3.5 20 781.7 / [8]

Co2FeO4@NCNTs 2.32 / 50 / 100 / 90.68 [9]

Co3O4-x@C 2.07 / 10 / 358 / 54.5 [10]

Co@Co3O4@NAC 2.10 / 5 / 36 721 164 [11]

Fe3C/Fe2O3@NGNs 2.11 / 10 / 40 722 139.8 [12]

C
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A

B
s

FeNx/C 2.08 / 5 / 84 / 36 [13]
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