Bridging the Gap between Manganese Oxide Precursors

Synthesis and Lithium Manganese Oxide Cathodes for

High-Voltage Lithium-Ion Batteries

Mariam Baazizi ^{a,b}, Mehdi Karbak ^a, Mohamed Aqil ^a, Simon Sayah ^b, Mouad Dahbi ^a, Fouad Ghamouss ^{a*}

^a Department of Materials Science, Energy, and Nano-Engineering, Mohamed VI Polytechnic University, Ben Guerir, Morocco.

^b Laboratory of Physical-Chemistry of Materials and Electrolytes for Energy (PCM2E), University of Tours, 37200 Tours, France.

*Figure S1: Schematic illustration of the synthesis of MnO*₂, *CMnO*₂ *and LMO using ethanol (-OH) and propanal (-CHO)*

Figure S2: SEM images of a) MnO₂-OH, b) CMnO₂-OH, c) LMO-OH, d) MnO₂-CHO, e) CMnO₂-CHO f) LMO-CHO

Figure S3: Adsorption isotherms of a) MnO₂-OH and CMnO₂-OH, b) MnO₂-CHO and CMnO₂-CHO

Figure S4: XPS Mn 2p of MnO2-OH, CMnO2-OH, MnO2-CHO, and CMnO2-CHO

Material				1	MnO ₂ -OI	Н			
Core Peak	Mn 2p		O 1s				K 2p		
Component	Mn ³⁺	Mn ⁴⁺	O-Mn	O-	O-C	C-C,C- H	С-О	C=O	
Binding Energy (eV)	641,4	642,2	529,8	531,4	532,8	285,0	286,2	288,6	292,8- 295,6
Atomic %	11,2	8,5	36,4	8,1	1,8	18,7	2,5	2,8	10,1
Total Atomic %	19,7		46,3			24,0			10,1

Table S1: XPS composition table obtained for MnO₂-OH

Material		CMnO ₂ -OH								
Core Peak	Mn 2p		O 1s			C 1s			K 2p	
Component	Mn ³⁺	Mn ⁴⁺	O-Mn	O-	O-C	C-C,C- H	C-O	C=O		
Binding Energy (eV)	641,3	642,0	529,5	530,9	532,8	285,0	286,4	288,5	292,2- 295,0	
Atomic %	9,6	8,2	33,8	8,7	2,0	21,6	3,0	2,7	10,5	
Total Atomic %	17,8		44,5			27,3			10,5	

Table S2: XPS composition table obtained for CMnO₂-OH

Material		MnO ₂ -CHO									
Core Peak	Mn 2p		O 1s			C 1s			K 2p		
Component	Mn ³⁺	Mn ⁴⁺	O-Mn	O-	O-C	C-C,C- H	C-O	C=O			
Binding Energy (eV)	641,4	642,2	529,7	531,3	532,9	285,0	286,3	288,8			
Atomic %	10,9	2,5	18,8	14,9	3,3	39,4	4,8	3,6			
Total Atomic %	13,4		37,0			47,8					

Table S3: XPS composition table obtained for MnO₂-CHO

Material		CMnO ₂ -CHO								
Core Peak	Mn 2p		O 1s			C 1s			K 2p	
Component	Mn ³⁺	Mn ⁴⁺	O-Mn	O-	O-C	C-C,C- H	C-O	C=O	292,7- 295.5	
Binding Energy (eV)	641,1	-	529,6	531,0	532,6	285,0	286,3	288,8	1,5- 1,5	
Atomic %	17,6	-	27,5	10,3	4,6	31,3	2,6	2,2	1,2	
Total Atomic %	17,6		42,4			36,1			-1,2-	

Table S4: XPS composition table obtained for CMnO₂-CHO

Figure S5: XRD Rietveld refinement of LMO-CHO

Table S5. Lattice and agreement parameters obtained after Rietveld refinement of LMO-CHO.

Lattice Po	arameters	Refinement Parameters				
a (Å)	$V(A^3)$	R_{wp}	R _{exp}	GoF		
8.23943	559.360127	18.7	11.39	2.71		

Figure S6. Schematic illustration for calculation of diffusion kinetics based on GITT curves