Electronic Supplementary Information

Experimental section

Materials: Iron(III) chloride (FeCl₃), terephthalic acid ($C_8H_6O_4$), N, Ndimethylformamide (DMF), disodium phosphate anhydrous (Na₂HPO₄), potassium phosphate monobasic (KH₂PO₄), ethylenediaminetetraacetic acid disodium, potassium hydroxide (KOH), sodium hydroxide (NaOH), and N, N-diethyl-p-phenylenediamine (DPD) were obtained from Shanghai Maclin Biochemical Technology Co., Ltd. Urea, iridium(III) chloride (IrCl₃), sodium chloride (NaCl), sodium carbonate (Na₂CO₃), ruthenium oxide (RuO₂), Pt/C (20 wt.% Pt on Vulcan XC-72R), and Nafion (5 wt.%) were bought from Aladdin Ltd. (Shanghai, China). Nickel nitrate hexahydrate $(Ni(NO_3)_2 \cdot 6H_2O)$ was obtained from the Tianjin Damao chemical reagent factory. Acetone, ethanol, potassium permanganate (KMnO₄), sulfuric acid (H₂SO₄), and hydrochloric acid (HCl) were purchased from Beijing Chemical Reagent Co., Ltd (Beijing, China). Natural seawater was procured from Qingdao, Shandong, China. Before utilization, most magnesium and calcium salts were eliminated by adding Na₂CO₃ to the natural seawater. Ni foam (NF) was obtained from Shenzhen Green and Creative Environmental Science and Technology Co., Ltd. The study employed ultrapure water throughout.

Preparation of NiFe-MOF/NF: The NF $(2.0 \times 3.0 \text{ cm}^2)$ was initially subjected to sonication in HCl, ethanol, and water for 15 minutes each. Solution A is made by mixing Ni(NO₃)₂·6H₂O (291 mg) and FeCl₃ (81 mg) in 30 ml of distilled water. Terephthalic acid (16.6 mg) was dissolved in 9 ml of DMF as solution B. Then, solutions A and B should be combined and stirred for 30 minutes. The pretreated NF was put into the mixed solution in a Teflon-lined autoclave and heated at 150 °C for 6 h to get NiFe-MOF/NF. Then, it was taken out, washed with water, and dried at 60 °C for 2 h.

Preparation of Ir@NiFe-MOF/NF: Dissolve IrCl₃ (26.8 mg) in 30 ml water at 80 °C. Subsequently, the precursor NiFe-MOF/NF was introduced into a reactor with the IrCl₃ solution and heated at 80 °C for 12 h. Allow the reactor to cool, then remove the

material to wash and dry to obtain Ir@NiFe-MOF/NF.

Preparation of RuO₂/NF and Pt/C/NF: RuO₂ (5 mg) was added to a solution containing Nafion (20 μ L), ethanol (490 μ L), and water (490 μ L) with the aid of ultrasonication (30 min) to form a homogeneous ink (5 mg mL⁻¹). Catalyst ink (100 μ L) was then dropped onto a piece of cleaned NF (0.5 × 0.5 cm²) with a loading mass of 2.0 mg cm⁻². Pt/C/NF was prepared in the same way as RuO₂/NF.

Characterizations: X-ray diffraction (XRD) data were obtained using a Philip D8 apparatus with a Cu K α source ($\lambda = 1.54056$ Å). Raman spectroscopy was recorded on the Lab RAM HR Evolution confocal microscope with a 532 nm laser. To examine the morphology and composition of the samples, a scanning electron microscope (SEM, ZISS 300) equipped with energy dispersive X-ray (EDX) facility, a transmission electron microscope (TEM, JEM-F200, JEOL Ltd.) and X-ray photoelectron spectroscopy (XPS, ESCALAB 250 Xi) was utilized.

Electrochemical measurements: All electrochemical tests were conducted using the CHI 660E and 1140C electrochemical workstations. The working electrodes were prepared as described previously and were 0.5×0.5 cm² in size. The Hg/HgO and graphite rod were used as the reference and counter electrodes. Three distinct electrolytes were employed, comprising 1 M KOH, 1 M KOH + 0.5 M NaCl, and 1 M KOH + seawater, with a pH value of approximately 14.0. All measured potentials were converted to potentials relative to the reversible hydrogen electrode (RHE) following the Nernst equation ($E_{RHE} = E_{Hg/HgO} + 0.059 \times pH + 0.098$ V). The Tafel slope was determined through the application of the Tafel equation. Tafel equation: η = b log j + a, where η is overpotential, j is the current density (mA cm⁻²), and b is the Tafel slope (mV dec⁻¹). Electrochemical impedance spectroscopy measurements were conducted over a frequency range of 10⁵ to 0.01 Hz with an amplitude of 5 mV. The double-layer capacitance (Cdl) values were obtained utilizing cyclic voltammetry (CV) curves with a scan rate of 20-100 mV s⁻¹. The measured solution resistance was corrected for the iR compensation potential according to equation: $E_{corr.} = E - iR \times$ 0.85, where E is the original potential, R is the solution resistance, and i is the corresponding current. All data (except for Figs. 3d, 3e, 3f, 3h, 4d, 4e, 4h, S4, S5, S11, S15, and S16) have been reported with iR compensation.

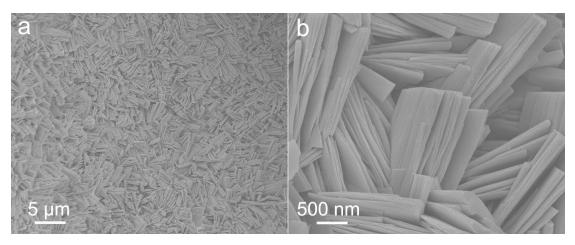
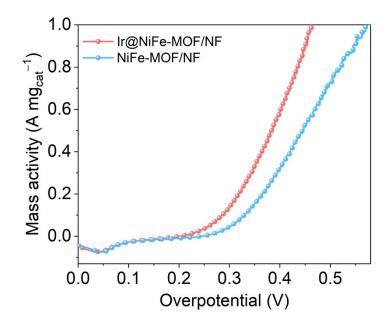



Fig. S1. (a) Low- and (b) high-magnification SEM images of NiFe-MOF/NF.

Fig. S2. Mass-normalized LSV curves of Ir@NiFe-MOF/NF and NiFe-MOF/NF in 1 M KOH for OER.

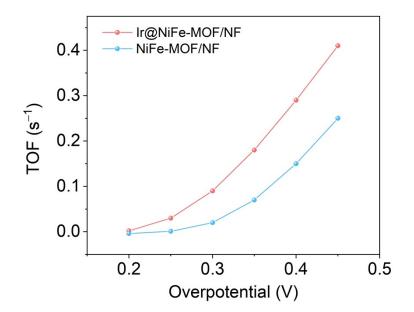
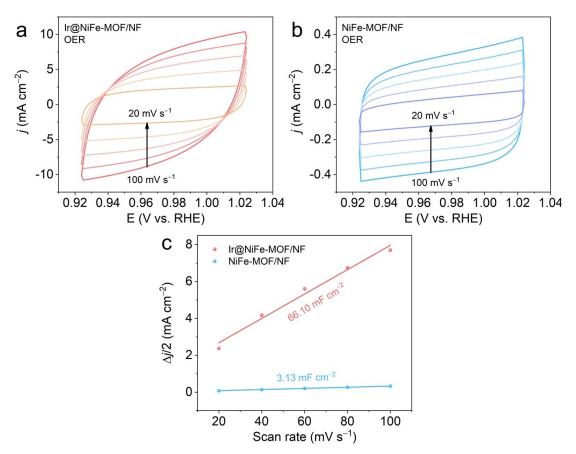
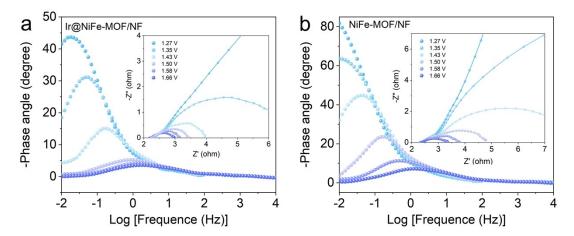




Fig. S3. TOF plots of Ir@NiFe-MOF/NF and NiFe-MOF/NF in 1 M KOH for OER.

Fig. S4. CV curves of (a) Ir@NiFe-MOF/NF and (b) NiFe-MOF/NF in the double layer region at different scan rates of 20, 40, 60, 80, and 100 mV s⁻¹ in 1 M KOH, and (c) C_{dl} values of as-prepared samples for OER.

Fig. S5. Operando Nyquist plots and the corresponding Bode phase plots of (a) Ir@NiFe-MOF/NF and (b) NiFe-MOF/NF at different potentials (vs. RHE) for OER.

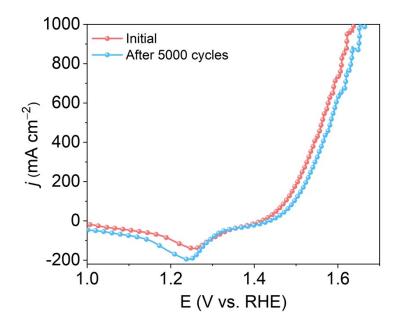


Fig. S6. LSV curves of Ir@NiFe-MOF/NF before and after 5000 CV cycles in 1 M KOH for OER.

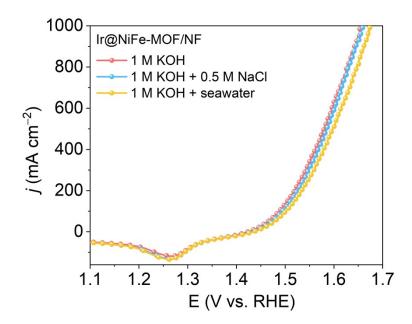
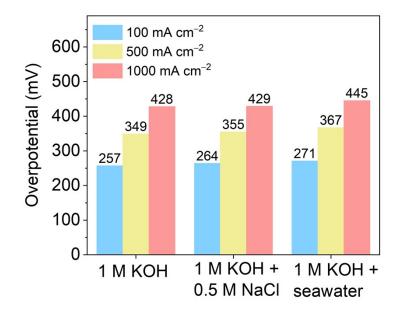



Fig. S7. The LSV curves for the Ir@NiFe-MOF/NF electrode tested in different electrolytes.

Fig. S8. The corresponding overpotentials for the Ir@NiFe-MOF/NF electrode tested in different electrolytes.

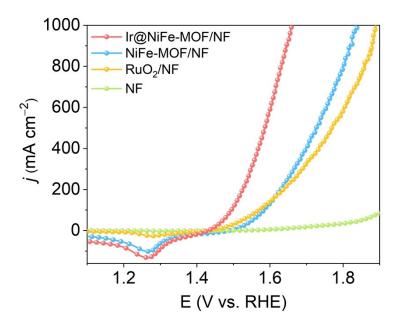
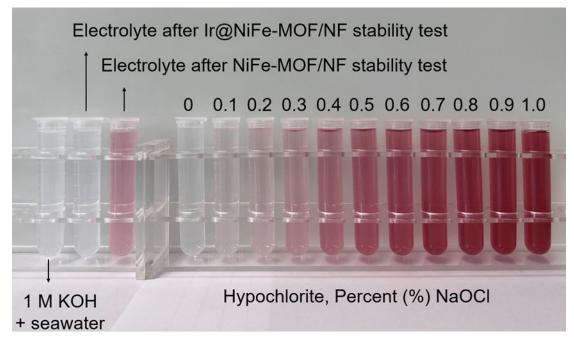



Fig. S9. LSV curves of different catalysts in 1 M KOH + seawater for OER.

Fig. S10. Hypochlorite detection for the 1 M KOH + seawater electrolyte after stability test.

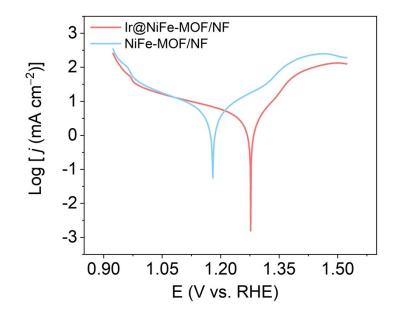


Fig. S11. Tafel plots of Ir@NiFe-MOF/NF and NiFe-MOF/NF in 1 M KOH + seawater.

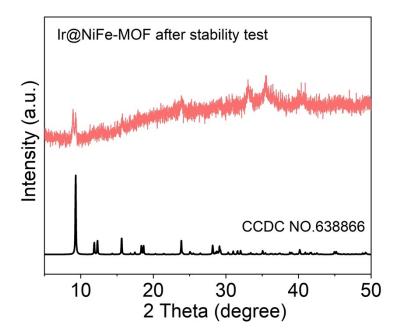
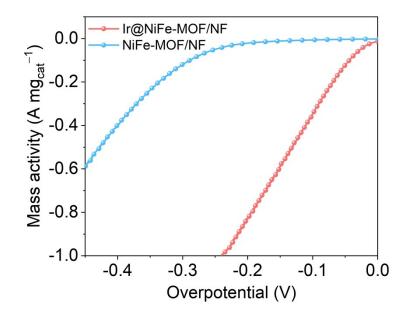



Fig. S12. XRD pattern of Ir@NiFe-MOF after OER stability test.

Fig. S13. Mass-normalized LSV of Ir@NiFe-MOF/NF and NiFe-MOF/NF in 1 M KOH for HER.

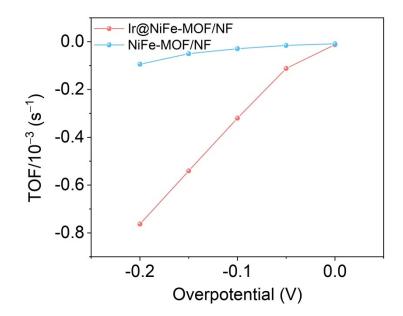


Fig. S14. TOF plots of Ir@NiFe-MOF/NF and NiFe-MOF/NF in 1 M KOH for HER.

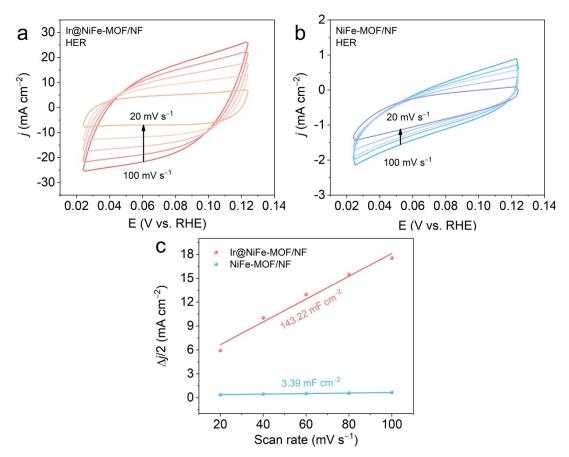
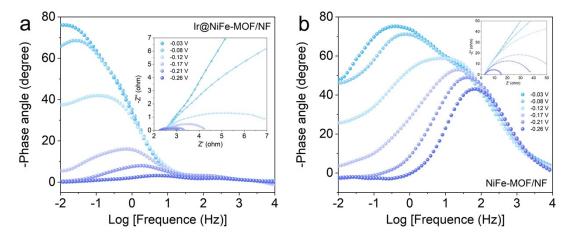
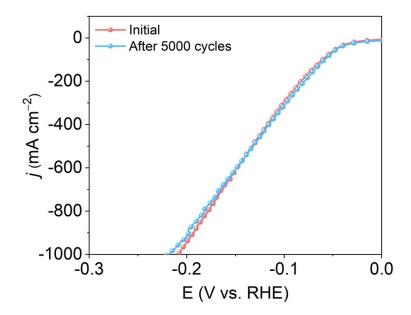




Fig. S15. CV curves of (a) Ir@NiFe-MOF/NF and (b) NiFe-MOF/NF in the double layer region at different scan rates of 20, 40, 60, 80, and 100 mV s⁻¹ in 1 M KOH, and (c) C_{dl} values of as-prepared samples for HER.

Fig. S16. Operando Nyquist plots and the corresponding Bode phase plots of (a) Ir@NiFe-MOF/NF and (b) NiFe-MOF/NF at different potentials (vs. RHE) for HER.

Fig. S17. The LSV curves of Ir@NiFe-MOF/NF before and after 5000 CV cycles in 1 M KOH electrolyte.

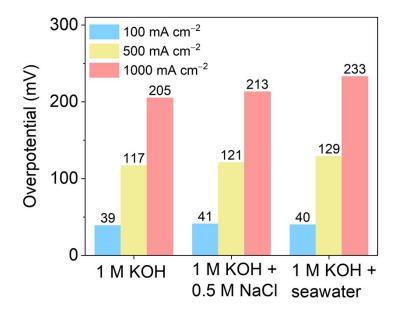


Fig. S18. The HER overpotentials for the Ir@NiFe-MOF/NF electrode tested in different electrolytes.

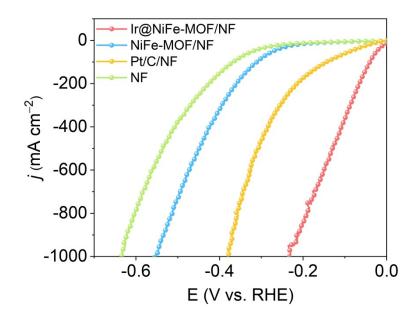


Fig. S19. LSV curves of different catalysts in 1 M KOH + seawater for HER.

Fig. S20. The gas photographs of (a) O_2 and (b) H_2 varying with time at 1000 mA cm⁻² by drainage method in 1 M KOH + seawater.

Element concentration (mg/L)	Ir@NiFe-MOF	NiFe-MOF
Ni	0.184	0.212
Fe	0.043	0.059
Ir	0.433	_

 Table S1. Element analysis of Ir@NiFe-MOF and NiFe-MOF by ICP-OES.

		Cumant			
Cotolyzata	Elostrol-t-	Current	Overpotential	Ref.	
Catalysts	Electrolyte	density $(m \Lambda am^{-2})$	(mV)	Kei.	
		$(mA \ cm^{-2})$	371		
Ir@NiFe- MOF/NF	1 M KOH	100	271	TL: I	
	+ seawater	500	367	This work	
		1000	445		
Au/Cr-	1 M KOH	10	323	J. Mater. Chem. A,	
NiFe/GC		- •		2019 , <i>7</i> , 9690–9697	
NiFe(OH) _x @N	1 M KOH	100	309	J. Mater. Chem. A,	
i ₃ S ₂ /MoS ₂ -CC				2019 , <i>7</i> , 2895–2900	
Fe-	1 M KOH	100	350	Appl. Surf. Sci., 2017,	
NiCo ₂ O ₄ /NF				416, 371-378	
Ni _{0.3} Fe _{0.7} -	1 M KOH	100	256	Appl. Catal. B, 2023,	
LDH@NF		100		323, 122091	
NRAHM-	1 M KOH +	100	340	ACS Catal., 2023 , 13,	
NiO/NF	seawater	100		5516-5528	
NiPS/NF	1 M KOH +	500	392	J. Energy Chem., 2022,	
	seawater	200	572	75, 66–73	
NiNS/NF	1 M KOH +	100	404	J. Mater. Chem. A,	
11110/111	seawater	100	דעד	2019 , 7, 8117–8121	
NiCoHPi@Ni3	1 M KOH + seawater	100	396	ACS Appl. Mater.	
N/NF				Interfaces, 2022, 14,	
11/11		500	474	22061-22070	
RuNi-Fe ₂ O ₃ /IF	1 M KOH + seawater	1000	497	Chin. J. Catal., 2022,	
1.0111-1 C2O3/11				43, 2202–2211	
S-	1 M KOH +	100	300	Energy Environ. Sci.,	
(Ni,Fe)OOH/N	seawater	500	398	2020 , <i>13</i> , 3439–3446	
F	scawater	1000	462		
NiMoN@NiFe	1 M KOH +	100	307	Nat. Commun., 2019,	
N/NF	seawater	100	307	10, 5106	
		10	280		
NiCoS/NF	1 M KOH +	100	360	<i>Appl. Catal. B</i> , 2021 , 201, 120071	
	seawater	500	440	291, 120071	
NiFe-LDH-6-	1 M KOH +	100	201	Mater. Today Energy,	
4/CC	seawater	100	301	2021 , <i>22</i> , 100883	
	1 M KOH +	100	314	J. Mater. Chem. A,	
Ni ₃ N@C/NF	seawater	100		2021 , <i>9</i> , 13562–13569	
S-NiFeSe ₂ /NF	1 M KOH +	100	367	Sci. China Chem.,	
	seawater	100		2024 , <i>67</i> , 2747–2754	
NiCo-EDA/GC	1 M KOH + seawater	100	670	Electrochim. Acta,	
				2017 , <i>247</i> , 381–391	
Cr-Co _x P/NF	1 M KOH +	100	334	Adv. Funct. Mater.,	
	seawater	100		2023 , <i>33</i> , 2214081	
		100	257	ACS Appl. Mater.	
MoN-	1 M KOH +	100	357	Interfaces, 2022 , 14,	
Co ₂ N/GC	seawater	500	432	41924–41933	
			1	11/21 11/00	

Table S2. Comparison of the OER performance of Ir@NiFe-MOF/NF with otherreported OER electrocatalysts.

CoSe ₂ - NCF/CC	1 M KOH + seawater	100	455	<i>Inorg. Chem. Commun.</i> , 2022 , <i>146</i> , 110170
Ni(OH) ₂ -	1 M KOH +	100	382	Nano Res., 2022 , 15,
TCNQ/GP	seawater	500	542	6084-6090
S-Cu ₂ O-	1 M KOH +	100	320	<i>Catal. Today</i> , 2022 ,
CuO/CF	seawater	500	440	400-401, 14-25
RuMoNi/NF	1 M KOH +	1000	484	<i>Nat. Commun.</i> , 2023 ,
	seawater			14, 3607
RuV-	1 M KOH +	100	318	J. Mater. Chem. A,
CoNiP/NF	seawater	100	510	2021 , <i>9</i> , 26852–26860
NiFe-PBA-gel-	1 M KOH +	100	329	Adv. Sci., 2022, 9,
cal/GC	seawater	100	529	2200146

Table S3. Corrosion potential ($E_{corr.}$) and corrosion current density ($j_{corr.}$) values of Ir@NiFe-MOF/NF and NiFe-MOF/NF.

Catalysts	E _{corr.} (V vs. RHE)	$j_{\rm corr.}$ (mA cm ⁻²)
Ir@NiFe-MOF/NF	1.277	3.234
NiFe-MOF/NF	1.180	3.982

Current Overpotential Electrolyte density Ref. Catalysts (mV) $(mA cm^{-2})$ 100 40 1 M KOH Ir@NiFe-500 129 This work **MOF/NF** + seawater 1000 233 (Ni-Appl. Catal. B, 2019, Fe)S_x/NiFe(OH)_v/N 1 M KOH 100 124 246, 337-348 F NiFe(OH)x@Ni3S2/ J. Mater. Chem. A, 1 M KOH 100 173 MoS₂-CC 2019, 7, 2895-2900 J. Mater. Chem. A. NiNS/NF 100 197 1 M KOH 2019, 7, 8117-8121 79 100 J. Mater. Chem. A. 1 M KOH +MIL-(IrNiFe)/NF 500 179 2021, 9, 27424-27433 seawater 1000 235 10 11 1 M KOH +Energy Environ. Sci., 47 Pt-Ni@NiMoN/NF 100 2023, 16, 4584-4592 seawater 109 500 ACS Appl. Mater. 1 M KOH +Pt-hcp Ni NBs/GC 10 137 Interfaces, 2023, 15, seawater 51160-51169 117 100 1 M KOH +Small 2023, 19, 500 237 NiS@FeNiP/NF 2300194 seawater 1000 327 Fe_x-10 33 1 M KOH +Energy Environ. Sci., 100 69 Ni&Ni_{0.2}Mo_{0.8}N/N seawater 2022, 15, 3945-3957 500 144 F 1 M KOH +Adv. Mater., 2021, 33, Ni-SN@C/GC 10 23 2007508 seawater 20 87 ACS Appl. Mater. NiCoHPi@Ni₃N/N 1 M KOH +100 182 Interfaces, 2022, 14, F seawater 22061-22070 500 281 1 M KOH +Chin. J. Catal., 2022, RuNi-Fe₂O₃/IF 1000 353 43, 2202-2211 seawater 1 M KOH +Adv. Mater., 2020, 33, 10 139 Ni-SA/NC seawater 2003846 1 M KOH +Adv. Funct. Mater., Ni₂P-Fe₂P/NF 100 250 seawater 2021, 31, 2006484 Appl. Catal. B, 2021, 1 M KOH +CoP_x@FeOOH/NF 100 190 294, 120256 seawater 1 M KOH +J. Mater. Chem. A. Ni₃N@C/NF 100 142 **2021**, *9*, 13562–13569 seawater 1 M KOH + J. Mater. Chem. A, RuV-CoNiP/NF 100 103 seawater **2021**, *9*, 26852–26860

 Table S4. Comparison of the HER performance of Ir@NiFe-MOF/NF with other

 reported HER electrocatalysts.

NiFe-PBA-gel-	1 M KOH +	100	480	Adv. Sci., 2022, 9,
cal/GC	seawater	100	400	2200146
mnNL/NIE	1 M KOH +	100	256	Inorg. Chem., 2024,
npNi/NF	seawater	1000	352	63, 5773–5778

Table S5. Comparison of overall water splitting performance for Ir@NiFe-MOF/NF

 with other reported bifunctional electrocatalysts.

Catalysts	Electrolyte	Current density	Cell Voltages	Ref.
	5	$(mA cm^{-2})$	(V)	
Ir@NiFe- MOF/NF	1 M KOH + seawater	10	1.49	
		100	1.84	This work
	- scawater	500	2.43	
NiFe(OH) _x @Ni ₃ S ₂ /MoS ₂ -CC	1 M KOH	10	1.55	<i>J. Mater. Chem. A</i> , 2019 , <i>7</i> , 2895–2900
NiNS/NF	1 М КОН	100	1.93	<i>J. Mater. Chem. A</i> , 2019 , <i>7</i> , 8117–8121
Ni-SN@C/GC	1 M KOH + seawater	10	1.72	<i>Adv. Mater.</i> , 2021 , <i>33</i> , 2007508
FCNP@CQDs/C P	1 M KOH + seawater	10	1.61	<i>Appl. Catal. B</i> , 2023 , <i>326</i> , 122403
Er-MoO ₂ /NF	1 M KOH + seawater	10	1.52	<i>Appl. Surf. Sci.</i> , 2023 , <i>615</i> , 156360
FMCO/NF	1 M KOH + seawater	10	1.58	<i>Appl. Catal. B</i> , 2023 , <i>328</i> , 122488
Mo-CoP _x /NF	1 M KOH + seawater	100	2.16	<i>Mater. Today, Nano</i> 2022 , <i>18</i> , 100216
Ni@CNTs- Mo _x C/Ni ₂ P/NF	1 M KOH + seawater	10	1.56	Nano Energy, 2023 , 111, 108440
FeNiCoMnRu@ CNT/CP	1 M KOH + seawater	100	2.15	J. Colloid Interface Sci., 2023 , 646, 844–854
Ru-CoV- LDH/NF	1 M KOH + seawater	100	1.89	J. Mater. Chem. A, 2021 , 9, 26852–26860
Ru ₂₂ NiMoP ₂ /NF	1 M KOH + seawater	10	1.53	Sustain. Energy Fuels, 2023 , 7, 4677–4686