Supporting Information

Optimized trimetallic selenides heterostructures as high-performance trifunctional electrodes for self-sustained hydrogen production

Muhammad Mushtaq,^a Malcolm Koroma,^b Shu Jiang,^a Selvam Mathi,^a Meilian Tu,^a Zeba Khanam,^a Yu-wen Hu,^{*a} Jianqiu Deng,^{*c} and M.-Sadeeq Balogun^{*ac}

Figure S1. (a) XRD and (b-c) SEM images of pristine NF.

Figure S2. (a-b) SEM images of Co_xMo_y precursors.

Figure S3. (a-b) SEM images of N-NCM-Se.

Figure S4. TEM image of N-NCM-Se with selenium particles anchored on the surface.

Figure S5. (a) XRD spectrum (b-c) SEM images of Ni₃Se₂-Ni₃N.

Figure S6. (a) XRD spectrum (b-c) SEM images of N-NC-Se.

Figure S7. (a) XRD spectrum (b-c) SEM images of N-NNM-Se.

Table S1. HER performance comparison of N-NCM-Se with previous reports on selenides-

based	electrocatalys	ts.
		••••

S/No.	Electrode	Overpotential (mV)	Tafel slope (mV dec ⁻¹)	References
		@10 mA cm ⁻²		
1	N-NCM-Se	14.4 mV	66.38	Our work
2	Co _{0.13} Ni _{0.87} Se ₂ /Ti)	64mV	107	Nanoscale, 2016, 8, 3911–3915
3	CoNiSe/NC-3	100 mV	66.5	J. Energy Chem, 34 (2019) 161-170
4	Co _{0.75} Ni _{0.25} Se/NF	106mV	74	Nanoscale, 2019, 11, 7959–7966
5	CoSe ₂ @NiSe ₂	162 mV	43.24	Int. J. Hydrog. Energy, 45 (2020)
				30611-30621
6	NiSe ₂	143mV	49	Nano Energy, (2016) 20, 29–36
7	NiSe/NF	96mV	120	Angew. Chem. Int. Ed, 2015, 54,
				9351-9355
8	NiSe/CoSe ₂	117mV	257.4	J. Alloys Compd 976 (2024) 173092
9	MoSe ₂ -NiSe ₂ -CoSe ₂ /PNCF	38 mV	38	Nano Energy, 71 (2020) 104637
10	NiSe ₂ /MoSe ₂ @N-BCCSs	119mV	89	Adv. Funct. Mater, 2024, 34,
				2314226
11	Mo _{0.6} doped NiSe ₂	172	115	Electrochim Acta, 475 (2024) 143683
12	5% Mo/SeNiSe ₂	89mV	57	Int. J. Hydrog. Energy 49 (2024) 25-36
13	Mo ₃ Se ₄ -NiSe	84.4mV	59.62	Adv. Mater, 2024, 36, 2305813
14	VSe-CoSe ₂ /MoSe ₂	74mV	52.4	J. Colloid. Interface Sc, 654 (2024)
				1040-1053
15	Ni-MoSe _x @CoSe ₂ CSNs	37mV	68	J. Chem. Eng, 383 (2020) 123129

Figure S8. HER overpotential for the as-prepared electrocatalsyts at varying current densities.

Figure S9. SEM images of (a-b) N-NCM-Se/100 and (c-d) N-NCM-Se/300 derived from selnization of the Co_xMo_y precursors. SEM images of (e-f) $Ni_3Se_2-Ni_3N/100$ and (g-h) $Ni_3Se_2-Ni_3N/300$ electrodes derived from direct selenization of the pristine NF.

Figure S10. (a) HER LSV curves, (b) HER Tafel slopes, (c) OER LSV curves, and (d) OER Tafel slopes of the N-NCM-Se electrodes with different selenium concentration. (e) HER LSV curves and (f) HER Tafel slopes of Ni₃Se₂-Ni₃N electrodes with different selenium concentration.

Figure S11. Comparison bar graph of the overpotential and Tafel slopes of our prepared N-NCM-Se with other control samples.

Figure S12. (a) EIS fitted circuit diagram of (a) N-NCM-Se. (b) Nyquist plots of the different electrodes.

Figure S13. CV curves of (a) $Ni_3Se_2-Ni_3N$, (b) N-NC-Se, (c) N-NNM-Se, and (d) N-NCM-Se at different scan rates at the non-faradic region for HER.

Figure S14. (a) HER C_{dl} values derived from the CV curves in Figure S13, and (b) normalized LSV curves after TOF calculation.

Figure S15. OER overpotentials for the as-prepared electrodes at different current densities.

Table S2. OER performance comparison of N-NCM-Se with previous reports on selenides-

Electrode	Overpotential (mV)	Tafel slope (mV	References
	@10 mA cm ⁻²	dec-1)	
N-NCM-Se	226 mV	53.33	Our work
NiSe ₂ /CoSe ₂	226mV	53	Adv. Mater. 2020, 32, 2000607
CoSe₂@pMF-R	378 mV	81.1	Int. J. Hydrog. Energy, 49 (2024) 995-1004
Ni _{0.27} Co _{0.28} Fe _{0.30} Se@CNT	240mV	44	J. Mater. Chem. A, 2021, 9, 24261-24267
$Co_{0.21}Ni_{0.25}Cu_{0.54})_3Se_2$	272 mV	54	J. Mater. Chem. A, 2019, 7, 9877-9889
Fe _{0.48} Co _{0.38} Cu _{0.14})Se	256mV	40.8	ACS Sustain. Chem. Eng. 2019, 7, 9588-9600
Cu ₂ Se	270mV	48	ACS Appl. Energy Mater. 2018, 1, 4075-4083
MnSe ₂ @3 wt%	270mV	160	Appl. Surf. Sci, 605 (2022) 154804
CoMn)Se ₂	274 mV	39	Appl. Catal. B: Environ. 236 (2018) 569-575
Ni ₃ Se ₂	290mV	89	Energy Environ. Sci, 2016, 9, 1771-1782
$Zn_{0.1}Co_{0.9}Se_2$	340mV	43.2	Electrochim Acta 349 (2020) 136336
MnSe@MWCNT	290mV	54	J. Mater. Chem. A, 2022, 10, 6772-678

based electrocatalysts.

Figure S16. CV curves of (a) $Ni_3Se_2-Ni_3N$, (b) N-NC-Se, (c) N-NNM-Se, and (d) N-NCM-Se at different scan rates at the non-faradic region for OER. (e) The Corresponding C_{dl} values for different samples.

Figure S17. (a) HER and (b) OER stabilities of N-NCM-Se at different current densities.

Figure S18. (a) HER LSV curves and (b) OER CV curves of N-NCM-Se before and after 60 h long term stability test.

Figure S19. SEM images of N-NCM-Se after 60 h HER stability test.

Figure S20. (a) Ni 2p, (b) Co 2p, (c) Mo 3d, (d) Se 3d, (e) O 1s, and (f) N 1s XPS spectra of N-NCM-Se before and after 60 h HER stability test.

Figure S21. Structural stability of N-NCM-Se after 60 h OER stability. (a-b) SEM and (c) TEM images of N-NCM-Se. (d-f) HRTEM images for different constituents of the composite and (g-i) the corresponding lattice fringes.

Figure S22. (a-b) SAED of N-NCM-Se before stability. (c-d) SAED of N-NCM-Se after stability and their corresponding HAADF/TEM elemental mapping (e) before and (f) after OER stability.

Figure S23. (a) Ni 2p, (b) Co 2p, (c) Mo 3d, (d) Se 3d, (e) N 1s, and (f) O 1s XPS spectra of N-NCM-Se before and after 60 h OER stability test.

Figure S24. OWS LSV curves for Ni_3Se_2 - Ni_3N , N-NC-Se and N-NNM-Se electrodes using both cathode and anode.

Figure S25. OWS stability of N-NCM-Se||N-NCM-Se for 12 h at different densities.

Figure S26. CV curves of (a) $Ni_3Se_2-Ni_3N$, (b) N-NC-Se (c) N-NNM-Se and (d) N-NCM-Se at different scan rates for the SC three electrode system.

Figure S27. GCD curves of (a) $Ni_3Se_2-Ni_3N$, (b) N-NC-Se (c) N-NNM-Se and (d) N-NCM-Se at different current densities for the SC three electrode system.

Figure S28. CV curves of (a) N-NCM-Se/100 and (b) N-NCM-Se/300 at different scan rates for the SC three electrode system. (c-d) GCD curves of (c) N-NCM-Se/100 and (d) N-NCM-Se/300 at different current densities for the SC three electrode system.

Figure S29. Comparisons of the (a) GCD curves at 10 mA cm⁻² and (b) specific capacitances of N-NCM-Se electrodes with different selenium concentrations.

Figure S30. CV curves for (a) AC anode and (b) combined CVs of AC anode and N-NCM-Se cathode.

Figure S31. (a) CV curves of N-NCM-Se||AC ASC device using different electrochemical window at fixed scan rate of 100 mV s⁻¹. (b) CV curves of N-NCM-Se||AC ASC device at wide potential window at different scan rates using fixed potential range of 0 - 1.6 V.

Table S3. N-NCM-Se||AC performance comparison with other recent reports on selenides-

based electrode in ASC.

Materials	Electrolyte	C (F g-1)	E (Wh kg ⁻¹)	P (W kg-1)	References
M-Ni ₃ Se ₂ @CoSe AC	ЗМКОН	206 @0.6 A g ⁻¹	73	1838	Our work
3DG/ZnSe-SnSe ₂ AC	ЗМКОН	80.5 @1 A g ⁻¹	25.3	750	ACS Appl. Nano Mater. 2024, 7,
					13434–13446
CoSe₂@NiMn-	6M KOH	102 @0.2A g ⁻¹	36.6	760.2	J. Colloid Interface Sc, 655 (2024) 273-285
LDH@Cu _{1.8} Se AC					
3DG/(Co,Ni)Se ₂ CNWs AC	6M KOH	78.1 @ 1Ag ⁻¹	28	800	Colloid Surf A: Phys. Eng, 698 (2024)
					134595
SnO ₂ -SnSe AC	ЗМ КОН	93.8 @ 1Ag ⁻¹	33.4	800.4	Nano Energy, 126 (2024) 109690
Bi ₂ Se ₃ NiCo ₂ S ₄	ЗМ КОН	139 @ 0.5 A g ⁻¹	48	800	J. Energy Storage,75, 2024, 109662
NiCo ₂ Se ₄ AC	6М КОН	120 @ 2 A g ⁻¹	42.4	1600	J. Alloys Compd 973 (2024) 172913
MnCoSe ₂ rGO	1М КОН	71 @ 1A g ⁻¹	32	227	Surf. Interfaces 42 (2023) 103358
CoSe-Se@Ni AC	3.0 M KOH	106.73@0.5A g ⁻¹	37.94	475.30	Ceramics International 47 (2021) 15293-
					15306
V-(Ni,Co)Se ₂ @Nb ₂ CTx AC	6 М КОН	110.8 @ 2 A g ⁻¹	45.6	168.4	J. Chem. Eng. 484 (2024) 149440
CuCoSe@NiS/NF AC	3.0M KOH	117.4 @ 1 A g ⁻¹	41.8	800	J. Mater. Chem. A, 2024,12, 13818-13829

C =Specific capacitance; E= Energy density; and P= Power density